
Master in High Performance
Computing

Porting of the LBE3D to GPU
with OpenACC

Supervisor(s):

Ivan Girotto,

Federico Toschi

Candidate:

Saeid Aliei

6th edition
2019–2020

Abstract

With the increasing demand of computational capability at low-power, graphic

accelerators are today dominating not only the gaming market but also

equipping the majority of the most powerful supercomputer infrastructures

worldwide. On the other hand, the enabling on those accelerated systems of

complex scientific applications has not followed the technological shift, but

resulted particularly challenging and requiring significant effort in writing

codes on specific and, usually not portable, languages.

Refactoring large code-base applications requires man power and usually is

not portable and prone to errors. Among the several attempts to develop

directive based languages to port applications for heterogenous systems, Ope-

nACC has become among the most promising paradigms. This work is an

attempt to port on a world-class multi-GPU distributed hybrid system, as

the Marconi-100 hosted at CINECA, a production-ready, single-relaxation

time, multi-component Lattice-Boltzamann Methods (LBM) based applica-

tion, using OpenACC. It includes a detailed performance analysis of the

application, also with a comparison regards previous results obtained on

computer platforms equipped with x64-86 based Intel computer platform for

high-end computing.

i

Acronyms

AoS Array of Structures. 27

BCs Boundry Conditions. 3

BGK Bhatnagar-Gross-Krook. 10, 11

BSC Barcelona Supercomputing Center. 41

CAoSoA Clustered Array of Structure of Arrays. 28

CFD Computational Fluid Dynamics. 3, 27

CSoA Clustered Structure of Arrays. 28

FF Fully Fused. 39

GPGPU General Purpose computing on Graphics Processing Units. 2

GPU Graphics Processing Unit. 1, 2, 13, 19, 27, 36, 39

GPUs Graphics Processing Unit. 35

KNL Knights Landing. 28, 41

LBE3D Lattice-Boltzamann Equation in 3D. iv, v, 1, 2, 9, 10, 27, 28, 33,

35, 47

LBM Lattice-Boltzamann Methods. i, 2–4, 10, 26, 27, 38, 47

ii

MIC Many Integrated Cores. 27, 41

MPI Message Passing Interface. 36

PBC Periodic Boundry Condition. 3

SIMS Single Instruction Multiple Data. 27, 28

SIMT Single Instruction Multiple Threads. 14, 28

SKL SkyLake. 41, 47

SoA Structure of Arrays. 27, 28, 39

TLB Translation Lookaside Buffer. 28

iii

Contents

Chapter 1 Introduction 1

Chapter 2 Lattice-Boltzmann Methods 3

2.1 Lattice Boltzmann Methods 4

2.1.1 Boundry Conditions 8

2.1.2 Poiseuille Flow . 8

2.2 Multi-component Lattice Boltzmann models 10

2.2.1 The Shan-Chen pseudo potential model 10

Chapter 3 LBM based code on GPU using OpenACC 12

3.1 Introduction to GPGPU . 13

3.1.1 An Overview of GPU Architecture 13

3.2 Programming Models . 17

3.2.1 CUDA . 18

3.2.2 OpenACC . 19

3.3 LBM based code with OpenACC 27

3.3.1 Data Layout . 27

3.3.2 Data Locality . 33

3.3.3 Porting and optimization of Lattice-Boltzamann Equa-

tion in 3D (LBE3D) with OpenACC 35

Chapter 4 Results 38

4.1 Poiseuille Flow . 39

4.2 Multi-Component . 42

Chapter 5 Conclusions 47

Bibliography 49

Appendices 51

Appendix A Device Query 52

iv

List of Figures

List of Figures

2.1 a D3Q19 Lattice node . 5

2.2 Plane Poiseuille Flow. This is the results from one of the runs

of the LBE3D code. 9

3.1 A Full NVIDIA GV100 Architecture 15

3.2 A Full NVIDIA GV100 Architecture [13] 16

3.3 Cuda execution model [19] . 17

3.4 Top: lattice node for 4 population. Down: From top to bot-

tom, AoS, SoA, CSoA, CAoSoA 28

3.5 Figure showing different loop fusion levels and data locality

abstraction schema. As we move forward we gain better and

better performance as a result of enhanced data locality. . . . 33

3.6 Average time per call for different data structures with 1 MPI

processes and 256 Threads [9]. 34

4.1 Average time per call with 1 MPI process for different levels

of fusion with different data structures. 39

4.2 Strong scaling for Poiseuille flow with 512 cubic lattice. 40

4.3 Speedup and Average call time for different architectures, with

256 cubic lattice. For CPU versions we have used the fully

fused CSoA kernel data[9] and for GPU the fully fused version

of SoA has been used. 41

4.4 Effects of 2D and 3D distribution on boundary exchange av-

erage time. Notice the optimized time for 2D distribution. . . 42

v

4.5 Effects of optmizations discussed in the text in the scaling.

Observe the reduction in average time for boundary condition

exchange and fusion of move and hydrovar kernels. 43

4.6 Strong scaling for 256 cubic lattice multi-component LBM. . . 44

4.7 Strong scaling with 512 cubic lattice multi-component LBM. . 44

4.8 Weak scaling for multi-component with 2, 16, and 128 nodes

with 256, 512, and 1024 cubic lattices. 45

4.9 Comparison between V100 and SKL nodes of CINECA. The

first group is with 512 cubic and the second group is with 1024

cubic lattices. 46

vi

Chapter 1

Introduction

In the past decade heterogenous systems has become the de facto processing

units for large scale simulations, as evident from the Top500[7] list 8 out

of 10 currently most powerful HPC systems are hybrid systems, that take

advantage of accelerators, mostly Graphics Processing Unit (GPU) vendored

by NVIDIA®. Designing efficient, maintainable and portable applications

for heterogeneous systems has been usually a cumbersome effort, since these

accelerators use a specific programming language such as CUDA®. In the

recent years OpenACC has emerged as the new standard in compiler di-

rective based interfaces for portable and unified, accelerator programming.

There has been a skew of scientific applications efficiently offloading their

applications to accelerators. In this work we present the OpenACC imple-

mentation of an LBM based application, named LBE3D. Extending from

previous works, we start analyzing several data-layouts designed for highly

efficient LBM based applications. The analysis is meant to select the most

optimal configuration for hybrid CPU/GPU systems. Based on the results of

this effort we perform the porting of the LBE3D, with a detailed performance

analysis.

We start by introducing the theoretical foundations of the numerical mod-

els implemented in the LBE3D, and then we are going to introduce the

1

GPU architecture and the programming models used to write applications

for General Purpose computing on Graphics Processing Units (GPGPU).

We describe main features of the OpenACC paradigm, and discuss whether

is suited for an affordable, portable, and maintainable offloading of scien-

tific applications to GPUs. After that we are going to review the LBE3D

optimization, and the porting of the application to GPUs with OpenACC

directives. We show that our porting results efficient, if compared with per-

formance data obtained on high-end Intel platform during past productions,

and scalable on distributed multi-GPU compute nodes.

This thesis is outlined as such. In Chapter 2 we are going to review the LBM

theory and background, including a brief introduction of the Poiseuille flow

case, used to benchmark the different data-layouts, other then as validation

ground for the application. In Chapter 3 we are going to first introduce the

GPGPU architecture and its massively data parallel capabilities, including a

review of two programming models, namely CUDA and OpenACC. At last

we are going to show the results we achieved with the porting of Poiseulle

and multi-component on both single- and multi-GPU distributed platforms.

2

Chapter 2

Lattice-Boltzmann Methods

In this chapter we are going to discuss the theoretical and computational

aspects of the Lattice Boltzamann Equations and the resulting base algorithm

that has had tremendous effect on engeering problems and doing fundamental

science. In the last two decade or so, LBM has emerged as a promising tool

for modeling the Navier-Stokes equations and simulation of complex fluids

flows such as porus media flows or in other fields of science, in biomedical

flows, earth science(soil filteration), Energy Sciences(fuel cells) and so on.

Our focus in here will be the most important utilization of the LBM, which

is in Computational Fluid Dynamics (CFD). LBM is based on microscopic

models and mesoscopic kinetic equations. The Lattice Boltzmann Methods

can be viewed as finite difference method for solving the Boltzmann transport

equation and we can also recover the Navier-Stokes equations with LBM by

choosing a proper collision operator.

We are going to first introduce LBM and the base algorithm beneath it, then

we will introduce the commonly used Boundry Conditions (BCs), then using

a Periodic Boundry Condition (PBC) we are going to drive the analytical

solution for a steady plane Poiseuille flow, and then compare the velocity

profile with the simulations of the LBE3D application.

3

2.1. LATTICE BOLTZMANN METHODS

In section 2 we are going to introduce the Multi-component flows and in

doing so we are going to look at the basics of the Schen-Chen multicomponent

model.

2.1 Lattice Boltzmann Methods

The Lattice-Boltzamann Methods (LBM) originates from the Boltzmann’s

kinetic theory of gases. The basic idea is that we can imagine fluids consisting

of billions of particles, modelled by hard spheres that move randomly and

have collisions, according to the general Boltzmann transport eqaution:

∂f

∂t
+ ~u.~∇f + ~Fext.~∇~uf = Ω (2.1)

Where f(~x, t) is the particle distribution function, ~u is the particle velocity,

~Fext is some external force, which we are going to neglect for now and Ω is

the collision operator, which deals with all the collisions in the system that

results in thermalizing the system. The LBM simplifies the computational

effort of the Boltzmann’s original idea by confining particles to the nodes

of a lattice, where a particle can only move to it’s neighbor and diagnoal

nodes. For a 3 dimentional model a particle can only stream in a possible

of 19 directions, including the stationary point. We refer to these velocities

as the microscopic velocities and denote them with ~ei, where i = 0, ..., 18, as

you can see in Fig.[?]. This model is commonly known as the D3Q19 and is

the main model we will discuss here. There are of course other models, such

as D3Q15, D3Q27 and D2Q9 for a two dimentional problem [18]. Fig. 2.1

shows a typical node of a D3Q19 with 19 veclocities, ~ei defined by:

4

2.1. LATTICE BOLTZMANN METHODS

~ei =

(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, ..., 6

(±1,±1,±1) i = 7, ..., 18

Figure 2.1: a D3Q19 Lattice node

For each particle on the lattice we associate a descrete probability distribu-

tion function fi(~xi, ~ei, t) or simply fi(~x, t), i = 0, ..., 18, which describes the

probability of streaming in one particular direction of the lattice. The macro-

scopic fluid density can be defined as a summation of microscopic particle

distribution function.

ρ(~x, t) =
18∑
i=0

fi(~x, t) (2.2)

or the mass flux can be defined as,

~j(~x, t) =
18∑
i=0

~uifi(~x, t) (2.3)

5

2.1. LATTICE BOLTZMANN METHODS

also the macroscopic velocity

~u(~x, t) =
1

ρ

18∑
i=0

cfi~ei (2.4)

The key steps in LBM involve Streaming and Collision processes which are

given by left and right hand side of the equation below, respectively:

fi(~x+ ~ei∆t, t+ ∆t)− fi(~x, t) = −1

τ
(fi(~x, t)− f eq

i (~x, t)) (2.5)

In the implementing phase the streaming and collision steps are computed

separatedly and for our application we do each phase in multiple kerenels.

In the collision term of equation 2.4, f eqi (~x, t) is the equilibrium eqaution,which

is given by Boltzmann distribution, and τ is a measure of relaxation time

towards the equilibrium. If we take an incompressible flow, from Maxwell-

Boltzmann distribution we have:

f eqi (~x, t) = ρ(~x, t)

(
1

2πRT

) d
2

exp

(−(~ei − ~u)2

2πRT

)
= ρ(~x, t)

(
1

2πRT

) d
2

exp

(−~e2
i

2πRT

)
exp

(
~ei~u

πRT
− ~u2

2πRT

)
= ρ(~x, t)

(
1

2πRT

) d
2

exp

(−~e2
i

2πRT

)(
1 +

~ei~u

RT
+

(~ei~u)2

2(RT)2
− ~u2

2RT
+ ...

)
= ωiρ

(
1 +

3~ei~u

c2
+

9(~ei~u)2

2c4
− 3(~u)2

2c2

)
= ωiρ+ ρsi(~u(~x, t))

6

2.1. LATTICE BOLTZMANN METHODS

in which c =
√

3RT is the lattice sound speed and si(~u) is defined as,

si(~u) = ωi

[
3
~ei.~u

c
+

9

2

(~ei.~u)2

c2
− 3

2

~u.~u

c2

]
(2.6)

where ωi is the weights,

ωi =

1/3 i = 0

1/18 i = 1, ..., 6

1/36 i = 7, ..., 18

The physics of the fluid flows is mainly controlled by two dimensionless pa-

rameters, the Mach number and Reynolds number, respectively given by:

Ma =
u

c
, Re =

uL

ν

where ν is the kinematic viscosity, given by ν = µ
ρ

in which µ is the shear

viscosity.

Now we can set the algorithm as follow:

Algorithm 1: Schematic Algorithm for LBM

Initialize ρ, u, fi and f eq
i ;

for i← 1 to NUM STEPS do

f ?i ← fi, streaming step in the direction of ~ei ;

Compute macroscopic quantities, ρ and ~u from f ?i using

equations 2.2 and 2.4 ;

Compute f eqi using 2.1 ;

Collision phase: update the distribution function according to

fi = f ?i − 1
τ
(f ?i − f eqi) using 2.5

end

7

2.1. LATTICE BOLTZMANN METHODS

Most of the execution time is spent in streaming and collision operators. Col-

lison kernel is compute bound and streaming kernel is memory bound which

makes it ideal for performance evaulation of current pre-exa scale computa-

tioal efforts.

2.1.1 Boundry Conditions

Boundary Conditions (BCs) are central to the statbility and the accuracy

of any numerical solution. For the lattice Boltzmann method, the descrete

distribution functions on the boundry has to be such that it reflects the

macroscopic BCs imposed on the system. Moreover on the boundry nodes,

the distribution function assigned to each vectors ~ei pointing out of the lattice

move out of the computatinal domain in the streaming step [12] and the ones

assgined to the opposite vectors, are undefined because there is no node which

the distributions could come from, therefore special rules must be applied

for boundry nodes. These BCs can be chosen in various manners, periodic

boundries are realized by streaming ~fi leaving the computational domain on

the one boundry to the boundry nodes located on the opposite side of the

domain. For pressure driven, incompressable flow, the generalized periodicity

conditions of the flow can be written as:

~u(~x+ ∆~x, t) = ~u(~x, t)

2.1.2 Poiseuille Flow

Imagine a steady flow past a channel driven by a pressure gradient at the

inlet and outlet of the channel, see Fig. 2.2, we are going to apply the lattice

BGK model to simulate it and also we are going to derive the analytical

solution for this simple case.

8

2.1. LATTICE BOLTZMANN METHODS

Figure 2.2: Plane Poiseuille Flow. This is the results from one of the runs of
the LBE3D code.

By using symmetry and incompressibility, the velocity components u and v do

not have any horizontal variations and v ≡ 0. The Navier-Stokes equations

are further reduced to:

µ
∂2u

∂y2
=
∂p

∂x
, (2.7)

Where ∂p
∂x

= P1−P0

L
. The initial and boundry conditions are:

u(x, y, 0) = v(x, y, 0) = 0, p(x, y, 0) = Pavg

u(x, 0, t) = v(x, 0, t) = 0, u(x,H, t) = v(x,H, t) = 0

p(0, y, t) = P0, p(L, y, t) = P1

where Pavg = (P0 + P1)/2, and P0 and P1 are the pressure at the inlet and

outlet of the channel. Then the steady Poiseuille flow has the exact solution

for velocity as:

9

2.2. MULTI-COMPONENT LATTICE BOLTZMANN MODELS

u(x, y, t) =
∆p

2µL
y(y −H)

v(x, y, t) = 0

See Fig. ??, that shows the x component of the velocity distribution along y

directin. The data points are gathered from one of the runs of LBE3D.

2.2 Multi-component Lattice Boltzmann mod-

els

There are number of models which take to account multiple fluid components,

here we will discuss the Shan-Chen Multi-componet model [16, 22]. interested

reader is encouraged to see the references for the Free Energy based mod-

els, e.g. [17] , Colour Gradient [10]lattice boltzmann models and optimized

versions of it, e.g.[14].

2.2.1 The Shan-Chen pseudo potential model

We start with the standard LBM using the Bhatnagar-Gross-Krook (BGK)

collision term [3]. We recall that in the LBM population of particles on lattice

nodes are used to describe fluids. The distribution function fi(~x) = f(~x,~ei)

is used to describe the populations at each lattice site. From equation 2.5 we

know that the evolution of the distribution function is governed by the BGK

collision operator

fi(~x+ ~ei∆t, t+ ∆t) = fi(~x, t)−
1

τ
(fi(~x, t)− f eq

i (~x, t)) +Ki (2.8)

10

2.2. MULTI-COMPONENT LATTICE BOLTZMANN MODELS

To incorporate a body force ~F , an extra term Ki is included in the BGK

model. If we use the Guo’s force term [11]:

~K = (1− 1

2τ
)ωi[3

~ei − ~u
e2

+ 9
~ei.~u

e4
~ei]. ~F , (2.9)

The macroscopic velocity ~u is computed as,

~u(~x, t) =
∑
i

~eifi(~x, t) +
∆t ~F

2

Macroscopic transport equations for mass, momentum and energy can be

derived from the Boltzmann equations using a Chapman-Enskog expansion

[18]. The interaction force term between particles can be writen as,

~F (~x, t) = −Gψσ(~x, t)
8∑
i=1

ω(|~ei|)ψσ̄(~x+ ~ei∆t, t)~ei, (2.10)

where σ and σ̄ denote the different fluid components. G is a parameter

determining the interaction strength F (~x, t) between neighbouring particles.

It also determines whether the interaction is attractive or repulsive. To

simulate a binary immiscible fluids system, the value of G should be kept

positive so that a force will be generated to seperate the fluids away from the

interface. ψσ is the effective number density which is taken as the component

density, ψσ = ρσ. ω(|~ei|) is a parameter related to the strength and order of

isotropy of the interaction forces.

To incorporate the interaction force,Shan and Chen proposed a force term

scheme which only shifts the equilibrium velocity. However this force scheme

has been reported to be correct only if the relaxation time τ = 1. This

unfavorouble feature can be eliminated using Guo’s force term [21].

11

Chapter 3

LBM based code on GPU using

OpenACC

The current computing landscape is spotted with a variety of computing ar-

chitecture, multi-core CPUs, GPUs, many-core devices, DSPs, and FPGAs,

to name a few. It is now commonplace to find not just one, but several of

these differing architectures within the same machine. Programmers must

make portability of their code a forethought, otherwise they risk locking

their application to a single architecture, which may limit their ability to

run in future architectures. Although the variety of architectures may seem

daunting to the programmer, closer analysis reveals trends that show a lot

in common between them. The first thing to notice is that all of these ar-

chitectures are moving in the direction of more parallelism. CPUs are not

only adding CPU cores but also expanding the length of their SIMD opera-

tions. GPUs have grown to require a high degree of parallelism in order to

achieve high performance. Modern processors need not only large amount of

parallelism, but frequently expose multiple levels of parallelism with varying

degrees of coarsness. The next thing to notice that all of these architectures

have exposed hierarchies of memory. CPUs have the main system memory,

typically DDR, and multiple layers of cache memory. GPUs have the main

12

3.1. INTRODUCTION TO GPGPU

CPU memory, the main GPU memory, and various degrees of cache memory.

Moreover on hybrid architectures, where the two or more architectures have

completely separate memories, some with physically separate but logically

the same memory and some with fully shared memory[1]. Because of these

complexities, it’s important that developers choose a programming model

that balances the need for portability with the need for performance.

3.1 Introduction to GPGPU

General Purpose Computing on GPUs is a realtively new phenomena. GPUs

were first hardware blocks optimzed to do small graphics operations. Gam-

ing industry among others pushed the development of flexible, programmable

and more powerful GPUs, as demand grow for more flexible programmable

GPUs, there were several research attemps to develop languages to prorgam

GPUs more easily. In 2006 NVIDIA introduced CUDA architecture and it’s

data parallelism model, not suprisingly, fit well within data parallelism avail-

abale in NVIDIA GPUs. GPU provides much higher instruction throughput

and memory bandwidth than the CPU within a similar price and power en-

velope. Other computing devices, like FPGAs are also very energy efficient

but offer much less programming flexibility than GPU[6].

3.1.1 An Overview of GPU Architecture

GPU architecture differes significantly from that of CPUs. The basic idea

is simple, remove everything that makes a single instruction run fast, like

cache, which makes up to 50% of die area of modern day CPUs, out-of-order

control logic, complex branch predictions, memory prefetching, etc. Instead

invest saved transistors into more copies of the simple core. The funding

design assumption is, expect only data-parallel workloads and exploit this to

maximum extent in the chip design. Here we will mention basic architecture

13

3.1. INTRODUCTION TO GPGPU

and concepts using an NVIDIA Volta architecture.

By using the concept of Single Instruction Multiple Threads (SIMT) NVIDIA

GPUs have hundreds of cores that can process thousands of software threads

simaltaneously. A GPU is connected to a host through a high-speed I/O

bus, typically PCI-Express. Though newer generations use NVLink for more

bandwidth and NVIDIA also recently introduced NVSwitch which will en-

able bandwidth of upto 900 GB/s betweeen GPUs in high-end HPC facilities.

The GPU has it’s own device memory, for a Tesla V100 it comes in 16 and

32 GB configuration. Data usually is transferred between the GPU and host

memories using programmed DMA, which operates concurrently with the

host and GPU compute units, though there is some support for direct ac-

cess to host memeory form GPU under certain restrictions. As a GPU is

designed for throughput computing or stream, it deos not depend on a deep

cache memory hierarchy for memory performance. The device memory sup-

ports very high data bandwidth using a wide data path. On NVIDIA GPUs,

it’s 4096-bits wide for a V100, allowing 128 consecutive 32-bit words to be

fetched from memory in a single cycle, which results in bandwidth of upto

900 GB/s. but this also means there is a severe effective bandwidth degra-

dation for strided access. A stride-two access for instance will fetch those

4096 bits but only use half of them suffering a 50% bandwidth loss. NVIDIA

GPUs have a number of multiprocessors, each of which executes in parallel

with the others.

The GV100 inlcludes 21.1 billions transistors with a die size of 815mm2[2].

similar to previous generation GP100 GPU, the GV100 is composed of multi-

ple Graphics Processing Clusters (GPCs), Texture Processing Cluster(TPCs),

Streaming Multiprocessors(SMs), and memory controllers. A full GV100 is

composed of 6 GPCs, 84 Volta SMs, 42 TPCs(each including two SMs), and

eight 512-bit memory controllers(4096-bits total). Each SM has 64 INT32,

64 FP32, 32 FP64 Cores and 8 new Tensor cores. Each SM also includs four

texture units. with 84 SMs, a full GV100 GPU has a total 5376 INT32 cores,

5376 FP32 cores, 2688 FP64 cores, 672 Tensor cores which are purpose built

for deep learning workloads, and 336 texture units. Each memory controller

is attached to 768KB of L2 cache, and each HBM2 DRAM stack is controlled

14

3.1. INTRODUCTION TO GPGPU

Figure 3.1: A Full NVIDIA GV100 Architecture

by a pair of memory controllers, for a total of 900 GB/s bandwidth, at 877

MHz, the full GV100 GPU includes a total of 6144KB of L2 cache. Fig3.2

shows a full GV100 GPU.

The Tesla V100 accelerator uses 80 SMs, which can deliver peak performances

of[15]:

• 7.8 TFLOP/s of double precision floating-point (FP64) performance.

• 15.7 TFLOP/s of double precision floating-point (FP32) performance.

• 125 TFLOPS/s of mixed precision matrix-multiply-and-accumulate.

The block diagram of an SM is shown at Fig.3.2

The volta SM is partioned into 4 processing blocks, instruction from the same

warp are allocated to a specific scheduler processing block and can only ac-

15

3.1. INTRODUCTION TO GPGPU

Figure 3.2: A Full NVIDIA GV100 Architecture [13]

16

3.2. PROGRAMMING MODELS

Figure 3.3: Cuda execution model [19]

cess the processing unit within that block.

3.2 Programming Models

As we said in the previous section, GPUs employe a SIMT model of execution,

taking advantage of hundreds of cores, that can process thousands of software

threads in parallel. These threads and also hardware cores are organized

into two level of parallelism. Hardware cores are organized into an array of

Streaming Multiprocessors (SMs) each SM consisting of a number of cores

named as Scalar Processors(SPs). An execution of a computational kernel,

e.g. CUDA kernel(more on this in the next section) will launch a software

thread grid. As shown in the Fig.3.3,

Grid is the computational domain which consists of thread blocks which

themeselves consist of threads. For exection of the kernels the CPU needs

17

3.2. PROGRAMMING MODELS

to first move the input data to GPU DRAM through a PCIe or NVLink

switch, then perform the computations within the kernel, finally move the

results back to CPU. For programmers the challenge is to efficiently utilize

the massive parallel capabilitites of GPUs, and to map the algorithms onto

thread hierarchy and to lay out the data in both global memory and shared

memory to maximize coalesced memory access for the threads and to avoid

any pitfalls such as bank conflicts[20]. Using low level programming models

such as CUDA and OpenCL is not only time consuming but also they need

extensive change to the original source code, decreasing code readability. In

this section we are going to talk about the most popular low level language

based programming models for GPU, namely CUDA and then we are going

to introduce the emerging standard in high level directive based GPU pro-

gramming, OpenACC, which is becoming the standard in quick porting of

scientific applications.

3.2.1 CUDA

The advent of multicore CPUs and manycore GPUs means that mainstream

processor chips are now parallel systems. The challenge is to develope ap-

plication software that transparently scales its parallelism to leverage the

increasing number of processor cores. In November 2006 Nvidia introduced

CUDA (Compute Unified Device Architecture), which is designed to over-

come this challenge while maintaining a low learning curve for programmers

familiar with standard programming languages such as C[6].

At it’s core there are three key abstractions, a hierarchy of thread groups,

shared memory 3.3 and barrier synchronization - that are exposed to porgam-

mer as a set of language extensions.CUDA extends C by allowing the pro-

grammer to define functions, called kernels, that when called, are executed

N times in parallel by N different CUDA threads, as opposed to only once

like regular C functions.

A kernel is defined using the global declaration specifier and the number

18

3.2. PROGRAMMING MODELS

of CUDA threads that execute that kernel for a given kernel call is specified

using a <<<..>>> execution configuration syntax. Each thread that executes

the kernel is given a unique thread ID that is accessible within the kernel

through built-in variables. threadIdx is a 3-component vector, which them-

selves form a thread block, which in return form the grid for the current

computational kernel, Fig.3.3

There is a limit to the number of threads per block, since all threads of a

block are expected to reside on the same processor core and must share the

limited memory resources of that core, the output of deviceQuery.cu is

shown at appendix A for a Tesla V100 GPU on Marconi100 installation at

CINECA.

On current GPUs, including Tesla V100 a thread block may contain up to

1024 threads. The kernel is actually executed in groups of 32 threads, called

warp. Threads are executed by Scalar Processors(SPs), thread blocks are

executed on multiprocessors, noting that thread blocks do not migrate and

several concurrent thread blocks can reside on one multiprocessor, limited by

the shared memory and registors of the multiprocessor, and finally a kernel

is launched on a grid of thread blocks.

3.2.2 OpenACC

OpenACC is a GPU-based programming model that is emerging as the stan-

dard in directive based accelerator programming. As a joint standardization

between CAPS, CRAY, PGI, and NVIDIA, OpenACC was first announced in

2011, which aims to provide a directive-based portable programming model

for accelerators, By using OpenACC, it allows the users to maintain a single

code base that is compatible with various compilers, while on the other hand

the code is also portable across different architectures and in heterogenous

platfroms. OpenACC is based on compiler directives that allow the develop-

ers to annotate parts of the source, that needs offloading to an accelerator, in

a portable manner, without programmers prior extensive knowledge on the

19

3.2. PROGRAMMING MODELS

the specifics of the accelerator being used, that can also scale to large counts

of nodes at HPC centers. In C and C++, these directives take the form of

a pragma. The example code below shows the OpenACC kernels directive

without any additional clauses

1 #pragma acc kernels

In fortran, the directives take the form of a special comment, as demonstrated

below,

1 !$acc kernels

as in this project, we mostly work with C source code, the code excerpts and

examples, being discussed are in C, for the Fortran version the interested

reader is encouraged to see [1].

OpenACC exposes programmer to three layers of parallelism, vector threads,

which perform a single operation on multiple data(SIMD) in a single step,

If there are fewer data than the length of the vector, operation is performed

on null data and the results are discarded. A worker which computes one

vector, and gang which is comprised of one or multiple workers. All workers

within a gang can share resources, such as cache memory or processor. Map-

ping these high-level concepts to the loop constructs is vendor dependent, in

a CUDA model these will be intepreted as warps, threads, and thread blocks,

The parallel construct identifies a region of code that will be parallelized

across OpenACC gangs, and when paired with the loop directive, the com-

piler will generate a parallel version of the loop for the accelerator. These

two directives can, and most often are combined into a single parallel loop

directive. Which can followed by the private or reduction caluses, much

like OpenMP prgoramming model. These constructs can be seen in the snip-

pet below for a jacobi relaxation method, which is ported with OpenACC

directives,

20

3.2. PROGRAMMING MODELS

1 while(err > tol && itr < MAX_ITR) {
2

3 err = 0.0;
4 #pragma acc parallel loop reduction(max:err)
5 for(int i = 1; i < N-1; i++) {
6 #pragma acc loop reduction(max:err)
7 for(int j = 1; j < M-1; j++) {
8

9 A[i][j] = 0.25 * (Anew[i][j+1] + Anew[i][j-1]
10 + Anew[i-1][j] + Anew[i+1][j]);
11 err = fmax(err , fabs(A[i][j] - Anew[i][j]));
12 }
13 }
14

15 #pragma acc parallel loop
16 for(int i = 1; i < N-1; i++) {
17 #pragma acc loop
18 for(int j = 1; j < M-1; j++) {
19 A[i][j] = Anew[i][j];
20 }
21 }
22

23 if(itr % 100 == 0) printf("%5d, %0.6f\n", itr , err);
24 itr ++;
25 }

Building the full jacobi iteration snippet with PGI compiler, gives:

$ pgcc -acc -ta:tesla:cc70 -Minfo=all jacobi.c

1 main:
2 62, Generating create(Anew [:][:]) [if not already

present]
3 Generating copy(A[:][:]) [if not already present]
4 67, Loop is parallelizable
5 Generating implicit copy(error) [if not already

present]
6 69, Loop is parallelizable
7 Generating Tesla code
8 67, #pragma acc loop gang (32), vector (16) /*

blockIdx.y threadIdx.y */
9 Generating implicit reduction(max:error)

10 69, #pragma acc loop gang (16), vector (32) /*
blockIdx.x threadIdx.x */

11 77, Loop is parallelizable
12 79, Loop is parallelizable
13 Generating Tesla code
14 77, #pragma acc loop gang , vector (4) /* blockIdx.y

threadIdx.y */
15 79, #pragma acc loop gang (16), vector (32) /*

blockIdx.x threadIdx.x */
16 90, FMA (fused multiply -add) instruction(s) generated

with the loop directive we can give compiler more infomation about the

proceeding loop, through several clauses, independent, which means that

21

3.2. PROGRAMMING MODELS

all iterations of the loop are independent, which is implied by default by the

PGI compiler, collapse(N), which turns the next N loops into one flattened

loop. tile(N[,M,...]) which breaks the next 1 or more loops into tiles

based on the provided dimensions, which uses data locality by reducing hits

to the global memory. For optimizing data locality, OpenACC, provides also

the data construct, which facilitates the sharing of data between multiple

parallel regions. In the previous example we moved most of the compute

intensive parts of the jacobi iteration to the accelerator, sometimes though

process of copying data back and forth between host and device will consume

more time than actual computation. When compilers fail to predict if and

when the data will be needed, they sit on the safe side, and copy the data.

Though in these cases programmers can help compiler, utilizing structured

and unstructured data regions, moreover data clauses give the programmer

additional control over how and when data is created on and copied to or

from the device. These clauses may be added to any data, parallel, or

kernels construct to inform the compiler of the data needs of that region of

the code. Among others, the caluses that is used mostly in our code,

• copy - Allocate the listed variables on the device, copy to and from

the device and then free the space on the device.

• copyin - Same as copy, without copying back the data.

• copyout - Allocates memory on the device without initializing them,

at the end of the region, copy the results back to the host and frees the

space on the device.

• create - Just allocates the space on device, but do not copy to or

from the device.

• present - The listed variables are already present on the device.

• deviceptr - It tells the compiler that for the listed variables do not

translate their addresses, as they use device memory which is managed

22

3.2. PROGRAMMING MODELS

outside of OpenACC, this is used when OpenACC is mixed with other

languages such as CUDA, as OpenACC is interoperable.

If we make use of this new data constructs, we can improve upon our earlier

porting of jacobi iteration:

23

3.2. PROGRAMMING MODELS

1 #pragma acc data copy(A) create(Anew)
2 while(err > tol && itr < MAX_ITR) {
3

4 err = 0.0;
5 #pragma acc parallel loop gang (32),vector (16) reduction(

max:err)
6 for(int i = 1; i < N-1; i++) {
7 #pragma acc loop reduction(max:err)
8 for(int j = 1; j < M-1; j++) {
9

10 A[i][j] = 0.25 * (Anew[i][j+1] + Anew[i][j-1]
11 + Anew[i-1][j] + Anew[i+1][j]);
12 err = fmax(err , fabs(A[i][j] - Anew[i][j]));
13 }
14 }
15

16 #pragma acc parallel loop
17 for(int i = 1; i < N-1; i++) {
18 #pragma acc loop gang (16),vector (32)
19 for(int j = 1; j < M-1; j++) {
20 A[i][j] = Anew[i][j];
21 }
22 }
23

24 if(itr % 100 == 0) printf("%5d, %0.6f\n", itr , err);
25 itr ++;
26 }

On the other hand if we make use of object oriented programming, data

is usually allocated in constructor and deallocated in the desctructor, and

cannot be accessed outside of the class, or complex structures that make

use of dynamically allocated data, in these cases structured data regions

are not sufficient to tell the compiler the data layout. Hence OpenACC

2.0 introduced unstructured data lifetimes. The enter data directive with

create and copyin data clauses may be used to specify how the data should

be created on the device and exit data directive with copyout and delete

clauses can be used to identify precisely when the data should be copied back

and deallocated from the device.

update directive provides a way to synchronize content of host and device

memory. it accepts a device clause for copying data from host to device

and a self clause which was host in OpenACC 1.0 specification, but now is

deprecated.

24

3.2. PROGRAMMING MODELS

OpenACC Interoperability

OpenACC API specification is in a way that it doesn’t force the program-

mer to choose OpenACC or some other accelerator programming model, like

CUDA or OpenCL, it can play team with others, so that developers can

choose OpenACC and other technologies. Here we mention some of these

features that we have used in the LBE3D.

Suppose if you wanted to expose the device address of some array to host

so that it can be passed to a function, the way to do it is with host data

region which accepts only the use device clause.

1 void pbc_pop_soa_mpi_opt_packing(pop_type_soa *fp , pop_type*
buffer_recv , pop_type* buffer_send) {

2

3 // __ //
4 // __ //
5 if(size_comm > 1) {
6

7 pack_pop_soa_X_up(fp, buffer_send);
8 #ifdef _OPENACC
9 #pragma acc host_data use_device(buffer_send , buffer_recv)

10 #endif
11 MPI_Sendrecv(buffer_send , 5*NYP2*NZP2 , MPI_DOUBLE ,

pxp , tag[0], buffer_recv , 5*NYP2*NZP2 , MPI_DOUBLE ,
pxp , tag[0], MPI_COMM_ALONG_X , &status);

12 unpack_pop_soa_X_up(fp , buffer_recv);
13

14 pack_pop_soa_X_bottom(fp, buffer_send);
15 #ifdef _OPENACC
16 #pragma acc host_data use_device(buffer_send , buffer_recv)
17 #endif
18 MPI_Sendrecv(buffer_send , 5*NYP2*NZP2 , MPI_DOUBLE ,

pxp , tag[1], buffer_recv , 5*NYP2*NZP2 , MPI_DOUBLE ,
pxp , tag[1], MPI_COMM_ALONG_X , &status);

19 unpack_pop_soa_X_bottom(fp , buffer_recv);
20 } else {
21 // shared memory part ...
22 }
23 // pbc in other directions
24 }

There may be an applicatin that has already been accelerated using languages

such as CUDA or OpenCL, but the developer may want to add an acceler-

ated region using OpenACC, in this case the API provides the deviceptr

data clause, which may be used wherever any data clause may appear. This

will inform the compiler that there is no need to do further action for that

pointer. From CUDA 6.0, NVIDIA added support for Managed Memory,

25

3.2. PROGRAMMING MODELS

which bridges the gap between host-device memory, resulting in simplifying

programmers effort to manually manage data between host and device, which

usually these two are seperated by PCI-Express bus. This is similar to Ope-

nACC way of keeping referencs of the data, in that only one single reference

to the memory is necessary and the runtime will handle the complexities of

the data movement, such as in the case of C++ classes or structures with dy-

namically allocated array of pointers, which will normally require a manuall

deep copy of all the elements.

Porting Cycle

The porting cycle usually is an incremental approach to insure correctness.

Programmers usually assess the application performance, getting to know the

hot spots of the application, then using OpenACC to parallelize important

loops in the code, and then optimizing data locality to remove unnecessary

data migrations between the host and the accelerator, and finally optimiz-

ing loops within the code to maximize performance on a given architecture.

This approach has been successful in many applications because it prioritizes

changes that are likely to provide the greatest returnes so that the program-

mers can quickly and productively achieve the acceleration.

OpenACC provides a fast way of porting scientific applictions, using a uni-

fied interface for all accelerators, avoiding locking down the application for a

specific one. On the hand there is a tradeoff between performance and porta-

bility. Although OpenACC is desirable for it’s simplicity and unified inter-

face, but compared to, e.g. CUDA it’s had a wrather significant performance

dropoff, for a study of performance portability of OpenACC comapared to

CUDA for LBM applications, see [5].

26

3.3. LBM BASED CODE WITH OPENACC

3.3 LBM based code with OpenACC

LBM codes, over the years, have been optimized for various architectures and

HPC systems, including different CPU families, FPGAs and domain-specific

machines. With the advancement of the GPU technologies, and their ever

increasing computational powers and efficiency one would naturally develop

LBM codes for these accelerators. But as it is usuall, efficient and complete

LBM codes have usually large code base, and hence refactoring and rewriting,

as we explained before, usually is not the best idea. This project builds on top

of the work done on optimizations and performance analysis of the LBE3D,

which is a 3D LBM CFD solver, built on top of a generic compiler/profiling

library, ftmake[8, 9]. Study of this code is interesting not only because of

the underlying physical applications, but as it consists of two main kernels,

propagate and stream, which are respectfully memory bound and compute

bound problems, makes it of interest to benchmark different accelerators and

processors.

In here we will introduce the code, and then the porting of the code to

multi-GPU paradigm and further optimizations are discussed.

3.3.1 Data Layout

With the advances of Many Integrated Cores (MIC) processors and contin-

uous innovations in GPU architectures, applications that want to be perfor-

mant, have to consider their data memory layout. This is even more relevant

and rewarding for the two prominent kernels of LBE3D. The canonical data

structure that would be natural to use with LBM stencil algorithms, is the

Array of Structures (AoS), shown at Fig.3.4 with this schema all the

population data associated with one particular lattice index, are contigu-

ous in memory, but the same lattice index of different populations are not,

which results in non-unit strided access in memory, which haults the Sin-

gle Instruction Multiple Data (SIMS) instruction sets. With the Structure

27

3.3. LBM BASED CODE WITH OPENACC

Figure 3.4: Top: lattice node for 4 population. Down: From top to bottom,
AoS, SoA, CSoA, CAoSoA

of Arrays (SoA), distribution function for the same index populations for

different lattice points are stored contiguous in memory, which is the appro-

priate layout to utilize SIMS and SIMT architectures. But as explained in

[4] this will lead to unaligned memory access, since the address of popualtion

is computed as the sum of the current populations plus an offset, which is

generally not aligned with 64 Bytes, which will result in underutililzing the

current AVX512 instruction sets in e.g. Knights Landing (KNL) processors.

There is another layout that is used in the LBE3D to reduce the amount

of non-aligned accesses for differnet popualtion of a lattice site, which is to

cluster sites of the lattice in one direction, e.g. in the case of a 2D lattice,

with Lx × Ly sites, we cluster VL elements, which is a multiple of the vector

size of the processor.

The propagate kernel job is to redistribute probabilty of each lattice site for

the next iteration, Clustered Structure of Arrays (CSoA) will result in better

performance in terms of bandwidth, but for the collision kernel, profiling

have showed that this data structure will result in Translation Lookaside

Buffer (TLB) misses[4]. We can, after partioning SoA into VL parts, cluster

all ith elements of each partion into an array, resuting in the Clustered Array

of Structure of Arrays (CAoSoA) data structure. This combines the benifit

of the CSoA of having vectorizations of clusteres and at the same time,

it clusters all population data of each lattice site at the aligned memory

28

3.3. LBM BASED CODE WITH OPENACC

addresses.

Here you can see the structure definitions and initializations, also you can

see the OpenACC pragmas to allocate data on the device.

1 #define SIZE (NX*NY*NZ)
2 #define SIZEP2 (NXP2*NYP2*NZP2)
3 #define SIZEPOVL (NXP2*NYP2*NZP2OVL)
4 typedef double poptype;
5 /* ******************* */
6 /* S T R C T U R E S */
7 /* ******************* */
8 typedef struct {
9 poptype p[NPOP];

10 } pop_type;
11

12 typedef struct {
13 poptype *f;
14 } pop_type_soa;
15

16 typedef struct {
17 poptype c[VL];
18 } vpoptype;
19

20 typedef struct {
21 vpoptype* p[NPOP];
22 } pop_type_csoa;
23

24 typedef struct {
25 vpoptype p[NPOP];
26 } pop_type_caosoa;
27 /* *********************** */
28 /* A L L O C A T I O N S */
29 /* *********************** */
30 pop_type *f_aos;
31 pop_type_soa f_soa[NPOP];
32 pop_type_csoa *f_csoa;
33 pop_type_caosoa f_caosoa;
34

35 posix_memalign ((void*) &f_ , SIZEP2 * sizeof(pop_type));
36 f_aos = f_;
37

38 /* ******* */
39 /* S o A */
40 /* ******* */
41 f_soa [0].f = f_
42 for(pp = 0; pp < NPOP; pp++) {
43 f_soa[pp].f = f_soa [0].f + pp*SIZEP2;
44 }
45 #ifdef _OPENACC
46 #pragma acc enter data create(f_soa[NPOP])
47 for(pp = 0; pp < NPOP; pp++) {
48 #pragma acc enter data create(f_soa[pp].f[SIZEP2])
49 }

29

3.3. LBM BASED CODE WITH OPENACC

50 #endif
51

52 /* ********* */
53 /* C S o A */
54 /* ********* */
55 memset(f_ , 0, NPOP*SIZEP2OVL , sizeof(vpoptype));
56 posix_memalign((void*) &f_csoa , DATA_ALIGNMENT , sizeof(

pop_type_csoa));
57 #ifdef _OPENACC
58 #pragma acc enter data create(f_csoa)
59 #endif
60 f_csoa ->p[0] = (vpoptype *) f_;
61 for(pp = 0; pp < NPOP; pp++) {
62 f_csoa ->p[pp] = f_csoa ->p[0] + (pp * SIZEP2OVL);
63 }
64 #ifdef _OPENACC
65 #pragma acc enter data create(f_csoa ->p[0: NPOP][0: SIZEP2OVL])
66 #endif

30

3.3. LBM BASED CODE WITH OPENACC

Here also is the move kernel, which is used in the streaming step:

1 void move_soa(pop_type_soa * const __restrict__ nxt , const
pop_type_soa * const __restrict__ prv) {

2 int i, j, k;
3 int p, idx , offset;
4

5 profile_on (__move_soa);
6

7 #if defined _OPENACC && !defined _OPENACC_OPT
8 #pragma acc update device(nxt[0: NPOP], prv[0: NPOP])
9 #pragma acc update device(nxt ->f[0: SIZEP2], prv ->f[0: SIZEP2])

10 #elif defined _OPENACC && defined _OPENCC_OPT
11 #pragma acc declare present(nxt , prv)
12 #pragma acc parallel loop collapse (3) private(i, j, k, idx ,

offset)
13 #else
14 #pragma omp parallel for private(i, j, k, p, idx , offset)
15 #endif
16 for(i = 0; i < NX; i++)
17 for(j = 0; j < NY; j++)
18 for(p = 0; p < NPOP; p++)
19 for(k = 0; k < NZ; k++) {
20

21 idx = IDX(i, j, k);
22 offset = idx + OFF[pp];
23 nxt[p].f[idx] = prv[p].f[offset];
24 }
25

26 #if defined _OPENACC && !defined _OPENACC_OPT
27 #pragma acc update host(nxt ->f[0: SIZEP2], prv ->f[0: SIZEP2])
28 #pragma acc update host(nxt[0: NPOP], prv[0: NPOP])
29 #endif
30

31 profile_off (__move_soa__);
32 }

31

3.3. LBM BASED CODE WITH OPENACC

and also the collide kernel, which is the compute bound kernel of the code

and is used in the collision step:

1 void collide_soa (pop_type_soa * const restrict fp , const
pop_type_soa * const restrict feq , double omega) {

2 int i, j, k;
3 int p, idx;
4

5 profile_on (__collide_soa__);
6

7 #if defined _OPENACC && !defined _OPENACC_OPT
8 #pragma acc update device(fp[0: NPOP], feq[0: NPOP])
9 #pragma acc update device(fp->f[0: SIZEP2], feq ->f[0: SIZEP2])

10 #pragma acc parallel private(i, j, k, p, idx)
11 #elif defined _OPENACC && defined _OPENACC_OPT
12 #pragma acc declare present(fp, feq)
13 #pragma acc parallel private(i, j, k, p, idx) firstprivate(

omega)
14 #else
15 #pragma omp parallel private(i, j, k, p, idx) firstprivate(

omega)
16 #endif
17 for(p = 0; p < NPOP; p++)
18 #ifdef _OPENACC
19 #pragma acc loop collapse (3)
20 #else
21 #pragma omp for collapse (3)
22 #endif
23 for(i = 0; i < NX; i++)
24 for(j = 0; j < NY; j++)
25 for(k = 0; k < NZ; k++) {
26

27 idx = IDX(i, j, k);
28 fp[p].f[idx] = fp[p].f[idx] * (1 -

omega) + omega * feq[p].f[idx];
29 }
30

31 #if defined _OPENACC && !defined _OPENACC_OPT
32 #pragma acc update host(fp[0: NPOP])
33 #pragma acc update host(fp->f[0: SIZEP2])
34 #endif
35

36 profile_off (__collide_soa__);
37

38 }

32

3.3. LBM BASED CODE WITH OPENACC

3.3.2 Data Locality

The kernels of LBE3D are written separately so that benchmarking of differ-

ent isolated parts can be done. But in general because of the memory wall,

if the computational task can be done with less memory access, it is much

more favourable, in this sense, we can fuse multiple kernels of the LBE3D

into one, to avoid multiple read and write of the intermediate results and

increase data locality.

for all time-steps; do

 <boundary-condition>

for all lattice-sites; do

 <move>

for all lattice-sites; do

 <hydrovar>

for all lattice-sites; do

 <equili>

for all lattice-sites; do

 <collis>

end for

end for

end for

end for

end for

for all time-steps; do

 <boundary-condition>

for all lattice-sites; do

 <move>

for all lattice-sites; do

 <collide-fused>

end for

end for

end for

for all time-steps; do

 <boundary-condition>

for all lattice-sites; do

 <move-collide-fused>

end for

end for

Figure 3.5: Figure showing different loop fusion levels and data locality ab-
straction schema. As we move forward we gain better and better performance
as a result of enhanced data locality.

33

3.3. LBM BASED CODE WITH OPENACC

A
O
S

C
F
-A

O
S

F
F
-A

O
S

S
O
A

C
F
-S
O
A

F
F
-S
O
A

C
S
O
A

C
F
-C

S
O
A

F
F
-C

S
O
A

C
A
O
S
O
A

C
F
-C

A
O
S
O
A

F
F
-C

A
O
S
O
A

Data Structures

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
V
G
-C

a
ll
[s
]

KNL 1MPI/256Threads

move

hydrovar

equili

collis

collide-fused

move-collide-fused

bcwall-x

pbc-pop

Figure 3.6: Average time per call for different data structures with 1 MPI
processes and 256 Threads [9].

34

3.3. LBM BASED CODE WITH OPENACC

3.3.3 Porting and optimization of LBE3D with Ope-

nACC

Schematic algorithm of the main LBE3D loop is shown below,

Algorithm 2: Schematics of the LBE3D Algorithm

Initialization;

Move lattice data to device;

for i← 1 to NUM STEPS do

Set Boundary Condition;

Stream populations for all lattice sites;

Compute Hydrodynamical Quantities;

Compute Equilibrium State;

Collide populations for all lattice sites;

if i%NUM DIAG = 0 then

Update lattice data on the host ;

Compute Hydrodynamical Quantities;

Do Statistical Analysis ;

Do Diagnostics ;

Dump Data ;

end

Swap lattice pointers ;

end

We Start by allocating contiguous addresses on Graphics Processing Unit

(GPUs) and controlling their affinity, as shown in the snippet. For a proof

of concept, in a non-optimized version we copy all refrenced data in each

kernel at each time step. Then we annotate the main loops over indices and

populations with appropriate loop directive.

1 #ifdef OPENACC
2 int ngpu = acc_get_num_devices(acc_device_nvidia);
3 int igpu = me % ngpu;
4 acc_set_device_num(igpu , acc_device_nvidia);
5 if (AMIROOT) fprintf(stdout , "NUM GPU: %d\n", ngpu);
6 fprintf(stdout , "GPU ID: %d, PID: %d\n", igpu , me);

35

3.3. LBM BASED CODE WITH OPENACC

7 #endif /* OPENACC */

For scaling on multi-GPU the scaling of boundary conditions kernels is one

of the determining factors. for that there are multiple optimized versions of

the kernel that performs the boundary condition. For GPU-to-GPU com-

munication we use CUDA-aware implementation of spectrum-mpi, which is

IBM® production quality MPI implementation based on OpenMPI. For that

we use the #pargma acc host_data use_device(field) which tells the compiler

to map the GPU memory to host, so that it can be used in Message Passing

Interface (MPI) calls. You can see in the snippet below for the optimized

periodic boundary condition, that is sending and receiving the use case of

this.

1 void pbc_pop_soa_mpi_opt_packing(pop_type_soa *fp , pop_type*
buffer_recv , pop_type* buffer_send) {

2

3 // __ //
4 // __ //
5 if(size_comm > 1) {
6

7 pack_pop_soa_X_up(fp, buffer_send);
8 #ifdef _OPENACC
9 #pragma acc host_data use_device(buffer_send , buffer_recv)

10 #endif
11 MPI_Sendrecv(buffer_send , 5*NYP2*NZP2 , MPI_DOUBLE ,

pxp , tag[0], buffer_recv , 5*NYP2*NZP2 , MPI_DOUBLE ,
pxp , tag[0], MPI_COMM_ALONG_X , &status);

12 unpack_pop_soa_X_up(fp , buffer_recv);
13

14 pack_pop_soa_X_bottom(fp, buffer_send);
15 #ifdef _OPENACC
16 #pragma acc host_data use_device(buffer_send , buffer_recv)
17 #endif
18 MPI_Sendrecv(buffer_send , 5*NYP2*NZP2 , MPI_DOUBLE ,

pxp , tag[1], buffer_recv , 5*NYP2*NZP2 , MPI_DOUBLE ,
pxp , tag[1], MPI_COMM_ALONG_X , &status);

19 unpack_pop_soa_X_bottom(fp , buffer_recv);
20 } else {
21 // shared memory part ...
22 }
23 // pbc in other directions
24 }

For example one of the packing functions is shown in the next page,

36

3.3. LBM BASED CODE WITH OPENACC

1 void pack_pop_soa_X_up(const pop_type_soa * const restrict p,
poptype * const restrict buffer_send)

2 {
3 int cx_acc_p [5] = {1, 7, 8, 11, 13};
4 size_t j, k, src , dest , ci;
5 size_t count = 0;
6

7 #if defined __OPENACC && !defined __OPENACC_OPT
8 #pragma acc pcopyin(p[0: NPOP])
9 #pragma acc pcopyin(p->f[0: SIZEP2])

10 #pragma acc parallel loop collapse (3) private(src , dest ,
count)

11 #elif defined __OPENACC && defined __OPENACC_OPT
12 #pragma acc declare present(p, buffer_send)
13 #pragma acc parallel loop collapse (3) private(src , dest ,

count)
14 #else
15 #pragma omp parallel for
16 #endif /* OPENACC && OPENACC_OPT */
17

18 for (ci = 0; ci < 5; ci++) {
19 for(j = 0; j < NYP2; j++){
20 for(k = 0; k < NZP2; k++){
21

22 count = ci * NZP2 * NYP2;
23 src = IDX(NX , j, k);
24 dest = count + (j * NZP2) + k;
25

26 buffer_send[dest] = p[cx_acc_p[ci]].f[
src];

27 }
28 }
29 }
30 }

37

Chapter 4

Results

Generally there are couple metrics of interest when studying the performance

of the LBM code. Here we mainly focus on Average Time per Call (AVGx-

Call), which is the total time spent on the kernel divided by the number of

calls to that kernel,

AVGxCall =
Total Time

Num Calls

Also another important figure is the Million Lattice Updates per Second,

which is defined as,

MLUPs =
V.n

t× 106
,

where V is the lattice size, n is the number of iterations, and t is the total

execution time of the LBM code.

38

4.1. POISEUILLE FLOW

4.1 Poiseuille Flow

After completely porting the data structures for Poiseuille part, and doing the

benchmark on 1 gpu of Marconi100, Out of all the data structures present,

we soon realize that SoA would be efficient to focus porting efforts. Fig.4.1

shows the porting of all the data structures with OpenACC.

AOS CF-AOS FF-AOS SOA CF-SOA FF-SOA CAOSOA CSOA CF-CSOA FF-CSOA CF-CAOSOA FF-CAOSOA

Data Structures

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

A
V
G
-C

a
ll
[s
]

Poiseuille Benchmark - Tesla V100-SXM2-16GB

move

hydrovar

equili

collis

collide-fused

move-collide-fused

bcwall-x

pbc-pop

move

hydrovar

equili

collis

collide-fused

move-collide-fused

bcwall-x

pbc-pop

A
O
S

C
F
-A

O
S

F
F
-A

O
S

S
O
A

C
F
-S

O
A

F
F
-S

O
A

0.00

0.05

0.10

0.15

0.20

0.25

Figure 4.1: Average time per call with 1 MPI process for different levels of
fusion with different data structures.

We soon reallize that the way to move forward would be to use Fully Fused

(FF) version of SoA. After this initial test we move all the OpenACC data

regions, namely data copyin and copyout pragmas out of the relevent kernels,

which is declared with OPENACC OPT identifier. By removing the cost of copy

between host and device we move forward with the strong scaling test.

Fig.4.2 shows the strong scaling of the Poiseuille flow with 512 cubic lattice,

with 2,...,16 nodes each with 4 Tesla V100 GPUs.

We see from the scaling figure that, between the three kernels, pbc pop,

doesn’t scale past 8 nodes, and hence becomes a bottleneck in scaling. The

reason for this bottleneck is the overhead of MPI communication for bound-

ary exchange between halo cells of the lattice. To reduce the amount of calls,

39

4.1. POISEUILLE FLOW

2 4 8 16

Number of Nodes

0.000

0.005

0.010

0.015

0.020

A
V
G
-C

a
ll
[s
]

Poiseuille 512 cubic - 4xTesla-V100-SXM2-16GB

hydrovar

move-collide-fused

pbc-pop

Figure 4.2: Strong scaling for Poiseuille flow with 512 cubic lattice.

before doing the MPI Sendrecv calls, we pack one face of the lattice, for the

populations that needes to be exchanged, which is 5, then we do the MPI ex-

change, and after that we unpack the buffer, see the snippet code provided for

pbc pop soa mpi opt with packing kernel, in the previous section. Apart

from the reduced number of calls, this has an also another advantage. For

noncontiguous data layout in memory, MPI provides the MPI Datatype that

makes a contiguous type of the data, which essentialy stores the data in a

buffer, here we have done the same thing, with packing functionality, but

we have a advantage in that when we do a manual packing instead of us-

ing MPI Datatypes we do the packing, multi-threaded using OpenACC or

OpenMP which makes the code more performant.

Fig. 4.3 shows the speedup we achieved comparing move collide fused soa

average call time with 1 GPU of Tesla V100 and P100 with move collide fused csoa

kernel average time of single socket Intel Xeon processors. We see that mov-

40

4.1. POISEUILLE FLOW

V100 P100 KNL SKL-P SKL-G BWD

Architecture

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
V
G
-C
al
l[
s]

×10−1 Average call time of best version of move collide fused kernel for different architectures with 256 cubic lattice

NVIDIA®Tesla V100-SXM2-16GB

NVIDIA®Tesla P100-SXM2-16GB

Intel®Xeon®Phi 7250 (Knights Landing) - 1MPI/64Threads

Intel®Xeon®8160(Skylake-Platnium) - 1MPI/24Threads

Intel®Xeon®6130(Skylake-Gold) - 1MPI/16Threads

Intel®Xeon®E5-2697(Broadwell) - 1MPI/18Threads

V100 P100 KNL SKL-P SKL-G BWD

1.0 1.79 2.48

8.28 9.19

20.34

Speedup

Figure 4.3: Speedup and Average call time for different architectures, with
256 cubic lattice. For CPU versions we have used the fully fused CSoA kernel
data[9] and for GPU the fully fused version of SoA has been used.

ing from V100 to P100 we gain almost 2 fold increase in speed. Moving to

CPU, KNL with 64 cores, is the best performant processor, among the Intel

Xeon generation of MIC processors. This is because of it’s core design goal,

which is to directly compete with the likes of NVIDIA P100 in the HPC and

Deep Learning domains. This data was gathered from the now dismantled

KNL partition of MARCONI at CINECA. Compared with KNL, there is a

4 fold decrease in performance with SkyLake (SKL) processors. The Sky-

lake Platnium is better than the Gold because of the extra 8 cores that it’s

packing. The SKL Platnium data is from the SKL partition of MARCONI

and the SKL Gold is from the Marenostrum 3 supercomputer operated at

Barcelona Supercomputing Center (BSC).

In Fig. 4.4 we present the figure for the effects of the 2d and 3d distribution

of processes. We see that we have a slight performance gain using 2d dis-

tribution along xy coordinates. This is because of better mapping of MPI

virtual cartesian topology, to the actual lattice problem. Since here we have

a periodic boundary condition along the xy direction.

41

4.2. MULTI-COMPONENT

1 2 4 8

Number of Nodes

0

1

2

3

4

5

A
V
G
-C
al
l[
s]

×10−3Poiseuille 256 cubic, pbc Optimizations - 4xTesla-V100-SXM2-16GB

pbc-soa-mpi

pbc-pop-mpi-packed

pbc-double-belt-mpi-packed

2D

3D

Figure 4.4: Effects of 2D and 3D distribution on boundary exchange average
time. Notice the optimized time for 2D distribution.

4.2 Multi-Component

Poiseuille flow serves as a benchmark utility, so far major optimizations that

we did was to reduce the data movement between host and device, by mov-

ing OpenACC data pragmas outside of the main loop. After that we im-

plemented an optimized verison of pbc pop, in that we create an MPI con-

tiguous data type for the populations that needs to be exchanged between

different GPUs, then we use a packing of those populations before doing the

MPI Sendrecv. We use these optimizations in the multi-component part.

Fig. 4.5 shows the effects of the these optimizations. Also compared to the

Poiseuille we have fused the move and hydrovar kernels, this results in sig-

nificant speedup, as there will be enhanced data locality and cache efficiency.

42

4.2. MULTI-COMPONENT

2 4 8
�&���#�!��
��$

0.00

0.01

0.02

0.03

0.04

0.05

AV
G-

Ca
ll[
s]

	�&�$�! ������&�������(��$���������������
�

�!'���)�#!'�#
�!'�
&"#���
�)�#!'�#
�&$���$����
"���$!���"�
"���$!���"��"�����
"���"!"��"��"�����
"����!&�������%��"��"�����

�����
��

Figure 4.5: Effects of optmizations discussed in the text in the scaling. Ob-
serve the reduction in average time for boundary condition exchange and
fusion of move and hydrovar kernels.

With the said optimizations we move forward with strong scaling bench-

mark for the multi-component. For that we use 256 cubic lattice for 1,...,64

nodes. Also shown is the efficiency for the scaling. We see that among oth-

ers, fused-shell kernel hinders scaling, this kernel is used for introducing

different forcing schemes in the fluid flow, and is the most compute intensive

part of the multi-component part. The boundary condition exchange ker-

nels remain almost constant during the whole scaling. compared with the

fused-shell, move-hyrovar kernel, which is the fused versions of the move

and hydrovar, has a better scaling figures.

In Fig. 4.7 we show the strong scaling with 512 cubic lattice, we see that the

efficiency of scaling is better, since the bandwidth saturation and

occupancy is higher, hence we expect to see even more efficient scaling with

larger problem sizes.

Fig. 4.8 shows the weak scaling of multi-component part, with 2, 16, and 128

nodes with 256, 512, and 1024 cubic lattices respectively. From the efficiency

43

4.2. MULTI-COMPONENT

1 2 4 8 16 32 64

Number of Nodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
V
G
-C
al
l[
s]

×10−2 Strong Scaling, Emulsion with 256 cubic- 4xTesla-V100-SXM2-16GB

move-hydrovar

fused-shell

pbc-soa-mpi

pbc-pop-mpi-packed

pbc-double-belt-mpi-packed

12 4 8 16 32 64

100

76

59

39

24

12
7

Efficiency

Figure 4.6: Strong scaling for 256 cubic lattice multi-component LBM.

4 8 16 32

Number of Nodes

0

1

2

3

4

A
V
G
-C
al
l[
s]

×10−2 Strong Scaling, Emulsion with 512 cubic - 4xTesla-V100-SXM2-16GB

move-hydrovar

uprime

fused-shell

pbc-soa-mpi

pbc-pop-mpi-packed

pbc-double-belt-mpi-packed

4 8 16 32

100

89

75

55

Efficiency

Figure 4.7: Strong scaling with 512 cubic lattice multi-component LBM.

graph we see that, we have a significant weak scaling efficiency in that we

only drop 10% going from 2 to 128 nodes.

Complementing Fig. 4.3 we have the Fig. 4.9 that shows the average call time

for V100 and SKL with 512 and 1024 cubic lattices. We can see that we have

44

4.2. MULTI-COMPONENT

2 16 128

Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
V
G
-C
al
l[
s]

×10−2 Weak Scaling, Emulsion - 4xTesla-V100-SXM2-16GB

move-hydrovar

uprime

fused-shell

pbc-soa-mpi

pbc-pop-mpi-packed

pbc-double-belt-mpi-packed

2 16 128

0.8

0.9

1.0

Efficiency

Figure 4.8: Weak scaling for multi-component with 2, 16, and 128 nodes with
256, 512, and 1024 cubic lattices.

almost equal total average time per call for each architecture but with V100

we need 8 times less node to achieve that time. This could be of interest in

the sense of not only energy efficiency of executing on less nodes, which is

something that could be studied further, but also on using compute hours

on HPC centers.

45

4.2. MULTI-COMPONENT

32 4 256 32

Number of Nodes

0

1

2

3

4

5

6

7

A
V
G
-C
al
l[
s]

×10−2

5123 10243

Emulsion 512,1024 cubic V100 vs. SKL - 4xTesla-V100-SXM2-16GB, 2x24-cores Intel Xeon 8160

move

hydrovar

move-hydrovar

uprime

fused-shell

pbc-(c)soa-mpi

pbc-pop-mpi-packed

pbc-double-belt-mpi-packed

SKL

V100

Figure 4.9: Comparison between V100 and SKL nodes of CINECA. The first
group is with 512 cubic and the second group is with 1024 cubic lattices.

46

Chapter 5

Conclusions

In this project we have investigated an LBM application for it’s portability to

accelerators with directive based programming language, OpenACC. We have

found that OpenACC provides a quick, unified and portable way of offloading

the kernels of the LBE3D to GPUs. This will have performance degradation

compared to native programming languages such as CUDA, but portability

and simplicity of OpenACC makes it very interesting to investigate.

We started with porting the poiseuille benchamrk part of the application

which is used to benchmark and validate the kernels. After single GPU port-

ing we found out that the SoA data structure gives the best performance.

This was given the fact that because of deep data structure with dynamic

allocations, PGI compiler had an issue mapping the underlying pointers lay-

out, which is something that needs to be investigated. After that we com-

pare our best version with the previous data from the Intel®Xeon®family of

processors, we find that compared to SKL processors we have about 8 times

speedup. We find from strong scaling of poiseuille flow with 512 cubic lattice,

that boundary condition exchange kernels, pbc pop needs to be optimized for

handling large amounts of calls for tens of nodes. For that we implement a

packing versin of it, that uses a multi-threaded packing scheme to achieve an

almost linear scaling.

47

After porting the poiseuille to multi-GPU, we begin the porting of the multi-

component part. After fusing the move and hydrovar kernels, we implement

the same packing schema for the double belt boundary condition exchange.

After performing the strong scaling tests for 256 cubic lattice, we see that,

past the 64 nodes the scaling efficiency drops drops, but on the other hand the

weak scaling graph shows an almost constant scaling figure. By comparing

the CPU and GPU results for multi-component part we see the same total

average time with V100 nodes of MARCONI100 partition of CINECA, but

with 8 times less nodes, which can be studied further for efficiency in energy

consumption, also for quality of service and fare usage of HPC facilities with

heterogenous architectures.

48

*References

[1] Openacc programming and best practices guide. Tech. rep., OpenACC Organization,

2015.

[2] Nvidia tesla v100 gpu architecture, the worlds most advanced data center gpu. Tech.

rep., NVIDIA Corporation, 2017.

[3] Bhatnagar, P. L., Gross, E. P., and Krook, M. A model for collision processes in

gases. i. small amplitude processes in charged and neutral one-component systems.

Phys. Rev. 94 (May 1954), 511–525.

[4] Calore, E., Gabbana, A., Fabio Schifano, S., and Tripiccione, R. Early Ex-

perience on Using Knights Landing Processors for Lattice Boltzmann Applications.

arXiv e-prints (Apr. 2018), arXiv:1804.01918.

[5] Calore, E., Gabbana, A., Kraus, J., Schifano, S. F., and Tripiccione, R.

Performance and portability of accelerated lattice boltzmann applications with

openacc. Concurrency and Computation: Practice and Experience 28, 12, 3485–

3502.

[6] Corporation, N. Cuda c++ programming guide. =

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html,, 2020.

[7] Dongarra, J., and Luszczek, P. TOP500. Springer US, Boston, MA, 2011,

pp. 2055–2057.

[8] Girotto, I., Fabio Schifano, S., Calore, E., Di Staso, G., and Toschi, F.

Performance and energy assessment of a lattice boltzmann method based applica-

tion on the skylake processor. Computation 8, 44 (2020).

[9] Girotto, I., Schifano, S., Calore, E., Di Staso, G., and Toschi, F. Com-

putational performances and energy efficiency assessment for a lattice boltzmann

method on intel knl. Advances in Parallel Computing 36 (2020), 605–613. cited

By 1.

[10] Gunstensen, A. K., Rothman, D. H., Zaleski, S., and Zanetti, G. Lattice

boltzmann model of immiscible fluids. Phys. Rev. A 43 (Apr 1991), 4320–4327.

[11] Guo, Z., Zheng, C., and Shi, B. Discrete lattice effects on the forcing term in the

lattice boltzmann method. Phys. Rev. E 65 (Apr 2002), 046308.

[12] Hecht, M., and Harting, J. Implementation of on-site velocity boundary conditions

for D3Q19 lattice Boltzmann simulations. Journal of Statistical Mechanics: Theory

and Experiment 2010, 1 (Jan. 2010), 01018.

[13] Jia, Z., Maggioni, M., Staiger, B., and Scarpazza, D. P. Dissecting the

NVIDIA Volta GPU Architecture via Microbenchmarking, Apr. 2018.

[14] Liu, H., Valocchi, A. J., and Kang, Q. Three-dimensional lattice boltzmann

49

=

model for immiscible two-phase flow simulations. Phys. Rev. E 85 (Apr 2012),

046309.

[15] Luke Durant, Olivier Giroux, M. H., and Stam, N. Inside volta: The world’s

most advanced data center gpu. Tech. rep., NVIDIA Corporation, 2017.

[16] Shan, X., Yuan, X.-F., and Chen, H. Kinetic theory representation of hydrody-

namics: a way beyond the Navier Stokes equation. Journal of Fluid Mechanics 550

(Mar. 2006), 413–441.

[17] Shao, J. Y., Shu, C., Huang, H. B., and Chew, Y. T. Free-energy-based lattice

boltzmann model for the simulation of multiphase flows with density contrast.

Phys. Rev. E 89 (Mar 2014), 033309.

[18] Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon

Press, Oxford, 2001.

[19] Wolfe, M. Programming heterogeneous parallel architectures, directive programming

with openacc. = https://www.pgroup.com/lit/presentations/cea-1.pdf, 2013.

[20] Xu, R. Optimizing the Performance of Directive-Based Programming Model for GPG-

PUs. PhD thesis, University of Houston, 2016.

[21] Yang, J. Multi-scale simulation of multiphase multi-component flow in porous media

using the Lattice Boltzmann Method. PhD thesis, Imperial College London, 2013.

[22] Zhang, R., Shan, X., and Chen, H. Efficient kinetic method for fluid simulation

beyond the navier-stokes equation. Phys. Rev. E 74 (Oct 2006), 046703.

50

=

Appendices

51

Appendix A

Device Query

This is the output of the deviceQuery.cu for a node of MARCONI100 in-

stallation on CINECA supercomputing facility.

1 ./a.out Starting ...
2

3 CUDA Device Query (Runtime API) version (CUDART static
linking)

4

5 Detected 4 CUDA Capable device(s)
6

7 Device 0: "Tesla V100 -SXM2 -16GB"
8 CUDA Driver Version / Runtime Version 10.2 / 10.2
9 CUDA Capability Major/Minor version number: 7.0

10 Total amount of global memory: 16128 MBytes
(16911433728 bytes)

11 (80) Multiprocessors , (64) CUDA Cores/MP: 5120 CUDA
Cores

12 GPU Max Clock rate: 1530 MHz
(1.53 GHz)

13 Memory Clock rate: 877 Mhz
14 Memory Bus Width: 4096-bit
15 L2 Cache Size: 6291456

bytes
16 Maximum Texture Dimension Size (x,y,z) 1D=(131072) ,

2D=(131072 , 65536) , 3D=(16384 , 16384 , 16384)
17 Maximum Layered 1D Texture Size , (num) layers 1D=(32768) ,

2048 layers
18 Maximum Layered 2D Texture Size , (num) layers 2D=(32768 ,

32768) , 2048 layers
19 Total amount of constant memory: 65536 bytes
20 Total amount of shared memory per block: 49152 bytes
21 Total shared memory per multiprocessor: 98304 bytes
22 Total number of registers available per block: 65536
23 Warp size: 32
24 Maximum number of threads per multiprocessor: 2048

52

25 Maximum number of threads per block: 1024
26 Max dimension size of a thread block (x,y,z): (1024 , 1024,

64)
27 Max dimension size of a grid size (x,y,z): (2147483647 ,

65535 , 65535)
28 Maximum memory pitch: 2147483647

bytes
29 Texture alignment: 512 bytes
30 Concurrent copy and kernel execution: Yes with 4

copy engine(s)
31 Run time limit on kernels: No
32 Integrated GPU sharing Host Memory: No
33 Support host page -locked memory mapping: Yes
34 Alignment requirement for Surfaces: Yes
35 Device has ECC support: Enabled
36 Device supports Unified Addressing (UVA): Yes
37 Device supports Managed Memory: Yes
38 Device supports Compute Preemption: Yes
39 Supports Cooperative Kernel Launch: Yes
40 Supports MultiDevice Co-op Kernel Launch: Yes
41 Device PCI Domain ID / Bus ID / location ID: 4 / 4 / 0
42 Compute Mode:
43 < Default (multiple host threads can use :: cudaSetDevice

() with device simultaneously) >
44

45 Device 1: "Tesla V100 -SXM2 -16GB"
46 .
47 .
48 .
49 Device 2: "Tesla V100 -SXM2 -16GB"
50 .
51 .
52 .
53 Device 3: "Tesla V100 -SXM2 -16GB"
54 .
55 .
56 .
57 Compute Mode:
58 < Default (multiple host threads can use :: cudaSetDevice

() with device simultaneously) >
59 > Peer access from Tesla V100 -SXM2 -16GB (GPU0) -> Tesla V100 -

SXM2 -16GB (GPU1) : Yes
60 > Peer access from Tesla V100 -SXM2 -16GB (GPU0) -> Tesla V100 -

SXM2 -16GB (GPU2) : Yes
61 > Peer access from Tesla V100 -SXM2 -16GB (GPU0) -> Tesla V100 -

SXM2 -16GB (GPU3) : Yes
62 > Peer access from Tesla V100 -SXM2 -16GB (GPU1) -> Tesla V100 -

SXM2 -16GB (GPU0) : Yes
63 > Peer access from Tesla V100 -SXM2 -16GB (GPU1) -> Tesla V100 -

SXM2 -16GB (GPU2) : Yes
64 > Peer access from Tesla V100 -SXM2 -16GB (GPU1) -> Tesla V100 -

SXM2 -16GB (GPU3) : Yes
65 > Peer access from Tesla V100 -SXM2 -16GB (GPU2) -> Tesla V100 -

SXM2 -16GB (GPU0) : Yes
66 > Peer access from Tesla V100 -SXM2 -16GB (GPU2) -> Tesla V100 -

SXM2 -16GB (GPU1) : Yes
67 > Peer access from Tesla V100 -SXM2 -16GB (GPU2) -> Tesla V100 -

SXM2 -16GB (GPU3) : Yes
68 > Peer access from Tesla V100 -SXM2 -16GB (GPU3) -> Tesla V100 -

SXM2 -16GB (GPU0) : Yes

53

69 > Peer access from Tesla V100 -SXM2 -16GB (GPU3) -> Tesla V100 -
SXM2 -16GB (GPU1) : Yes

70 > Peer access from Tesla V100 -SXM2 -16GB (GPU3) -> Tesla V100 -
SXM2 -16GB (GPU2) : Yes

71

72 deviceQuery , CUDA Driver = CUDART , CUDA Driver Version =
10.2, CUDA Runtime Version = 10.2, NumDevs = 4

73 Result = PASS

54

	Introduction
	Lattice-Boltzmann Methods
	Lattice Boltzmann Methods
	Boundry Conditions
	Poiseuille Flow

	Multi-component Lattice Boltzmann models
	The Shan-Chen pseudo potential model

	LBM based code on GPU using OpenACC
	Introduction to GPGPU
	An Overview of GPU Architecture

	Programming Models
	CUDA
	OpenACC

	LBM based code with OpenACC
	Data Layout
	Data Locality
	Porting and optimization of lbe3d with OpenACC

	Results
	Poiseuille Flow
	Multi-Component

	Conclusions
	Bibliography
	Appendices
	Device Query

