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CHAPTER 1

Introduction

In the recent years, there has been a significant hike in electricity prices. Given the
growing demand for computational resources at CERN and the rising electricity prices,
it will be beneficial to enhance the power efficiency of the High Energy Physics (HEP)
simulations being done at CERN. It is expected that the high luminosity phase of
the LHC (as shown in fig. 1.1) will demand approximately 10x more computational
resources than it demands currently. Hence, it is necessary to optimize the power and
time efficiency of these simulations.
HEP simulations comprise of three main stages:

» Event Generation: In this stage, the particles produced after the collisions are
generated according to the likelihood of their production.

 Simulation + Digitization: In this step, interaction of collision product with the
detector is simulated which results in electronic signals.

* Reconstruction: Here, electronic signals are translated to the particles passing
through the detector. This step is done for the simulated data as well as the real
data (the data coming from LHC).

The simulated data is then compared with the real data. In this project, I was
particularly interested in benchmarking the event generation step since it is relatively
easier to vectorize event generation and hence, one can exploit architectures like
GPU or even different CPU vectorizations. In this thesis, we have compared power
efficiency of CPU and GPU while running the MadGraph application, encapsulated in
a docker container.
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We used an event generation application called MadGraph [15] for this project and
used HEP-benchmark-suite [6] and HEPscore [7] [20] to benchmark it. We discuss
more about these tools in chapter 2. In chapter 3, we discuss how one can run the
suite and how the configuration of the suite and HEPscore can be customized to run
the containerized MadGraph application. We also discuss about how to customize the
configuraion to measure metrics of interest, for example: power consumption and load.
Lastly, in chapter 4, the analysis of the results has been done for this benchmarking
project.

Conclusions and open issues regarding the work presented in this thesis are discussed
in chapter 5.

Figure 1.1: Large Hadron Collider [14]
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Formalism

2.1 Applications and tools used

In this section we discuss the tools that were used for benchmarking, namely, HEPscore,
HEP-benchmark-suite and the MadGraph workload.

2.1.1 HEPscore

HEPscore is an application which orchestrates the execution of containerized work-
loads [8]. These workloads mimic the usage of WLCG resources. HEPscore can
be configured to execute certain benchmark containers on different architectures.
Currently, the application supports Docker/Singularity containers. Though HEPscore
is designed to use the containers from the HEP-workloads project [8], it can still work
with any Docker/Singularity container which conform to the HEP Workloads’output
JSON schema.

Computation of HEPscore

The application computes the final score based on how time efficient certain benchmarks
are on a given server.

For a given configuration, HEPscore is determined by computing the geometric mean
of the performance scores while executing each workload included in the configuration.
The performance scores typically represent the event throughput of the workload
process. Here, event throughput is the “events” processed per second, where one
“event” represents one LHC collision. This is done for a specific server, and then the
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server is assigned a score, telling us how good/bad the machine is for the kind of jobs,
the user is interested in.

To standardize the workload scores, each score is normalized relative to the score
of the reference server, which is specified in the configuration settings under the key
‘reference_machine’. For HEPscore23, the reference server is described as ’Intel CPU
Gold 6326 CPU @ 2.90GHz - 64 cores SMT ON’.

After normalization, the scores are averaged using the geometric mean and then
re-scaled according to the value indicated in the configuration settings under the key
’scaling’. This resulting value is then referred as HEPscore score.

HEPscore can be executed independently or using the HEP-benchmark-suite.
Running it with the suite provides additional functionalities. More about it is discussed
in the next section.

2.1.2 HEP-benchmark-suite

The suite is a toolkit capable of benchmarking various workloads for the HEP
experiments running at CERN. It can be used for the following:

* Imitating the usage of WLCG resources for experiment workloads: This allows
running imitation of applications running on WLCG .

* Allowing running the benchmarks on heterogeneous hardware: This makes it
possible to use the Suite to run on GPU and CPU (ARM/ X86,..).

* Collecting hardware metadata and comparing various platforms: This allows the
user to compare the outcome of the becnmark under the similar conditions.

* Having prompt feedback and being able to publish results: The suite provides
the feature to directly publish the results in a database at CERN.

* Probing resources on a cluster or on a cloud: This feature allows to suggest
deletion and re-provisioning of under-performing resources.

Figure 2.1 shows the high level architecture of the suite.The suite is capable of
running HEPscore (along with the other benchmarks) and it also provides support
for additional plugins. We used energy measurement plugins to determine various
metrics like: power consumption, load, memory usage, etc. HEP Benchmark suite
workflow can be described best by fig 2.2. Here, various servers from different
data centres are benchmarked using the suite and their results comprising of a json
summary are published to an AMQ broker. This json file contains HEPscore results
and plugin observations besides many other metrics of interest. Metadata (such as
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UID, CPU architecture, OS, Cloud name, IP address, etc.) are also included into the
searchable results. These results can then be analyzed and visualized by researchers,
site managers, etc.
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Figure 2.1: High Level architecture of the HEP-benchmark-suite [6]

2.1.3 MadGraph
MadGraph event generator software

MadGraph is an event generator application used in the realm of particle physics.
It calculates matrix elements for the Feynman diagrams that one is interested in.
The matrix element is related to the probability of the occurrence of the physical
process. These matrix elements are then used to calculate the cross sections, which
represent the likelihood of the process happening in a collision. Cross sections are
essential for predicting how often a particular process will be observed in experiments.
After the cross sections are calculated, MadGraph can be used to simulate event
generation. It generates random events based on the calculated probabilities and
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Figure 2.2: HEP-benchmark-suite workflow [6]

kinematic constraints. Each event contains information about the particles produced
and their momenta. Researchers can analyze the generated events and compare them
with experimental data or theoretical predictions. By comparing the simulated events
with the real data, scientists can test the validity of the Standard Model or look for
deviations that might indicate new physics beyond the Standard Model.

The MadGraph workload

The MadGraph workload is based on a (not yet publicly released) version of the
MadGraph event generator software which has been ported to GPU and CPU platforms
(vector instructions). Note that the reference [16] mentions that The "sa” benchmark is
currently based on a standalone application, using a simplified phase space sampling,
which cannot be used in production by the experiments.

The workload allows for various physics processes to be executed in parallel:
eemumu (e'e”— > pu'u"), gatt (g g — > i), ggttg (g g — > 17 @), gattgg (g g
— > ttgg). These processes differ in the relative importance of arithmetic intensity and
memory access, for example, *ggttgg’ is the most computationally intensive process.
And therefore, *ggttgg’ benchmark is executed by default.

The MadGraph workload [16] can be run on CPU as well as GPU. One can run the
stand alone docker container on CPU by executing the following command:

Listing 2.1: Running the docker container for MadGraph on CPU
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docker run -d gitlab-registry.cern.ch/hep-benchmarks/
hep-workloads /mgSamc-MadGraph4gpu-2022-bmk: v0.7

To run it on GPU:

Listing 2.2: Running the docker container for MadGraph on GPU

docker run --rm --security-opt=label=disable
--device nvidia.com/gpu=all gitlab-registry.cern.ch/
hep-benchmarks/hep-workloads/mgSamc-MadGraph4gpu
-2022-bmk:v0.7 --extra-args 7--gpu”

In the above command, we are passing gpu as an extra argument. One could also run
this container with the suite as done for the work presented in the thesis.
Command Line Interface (CLI) parameters
MadGraph workload supports the following extra arguments:
e —-cpu: run only the C++ benchmarks on CPU (1 or more copies)
* ——gpu : run only the CUDA benchmarks on GPU (1 copy)

e —-both : run both the C++ benchmarks on CPU and the CUDA benchmarks on
GPU (1 copy)

o —eemumu: e e~ — > u* u~ (low computational intensity, high overhead from
memory access/copy)

* —ggtt: g g —— >t (low computational intensity, high overhead from memory
access/copy)

* —ggttg: g g —— > rtg (higher computational intensity)
e -ggttgg: g g —— > tigg (even higher computational intensity)

* -dbl : double precision ’d’ benchmarks

-flt : single precision ’f’ benchmarks

-inl® : benchmarks without C++ aggressive inlining

-inl1: benchmarks with C++ aggressive inlining
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e -p: '-p<nblks>,<nthrs>,<niter> for number of threads, blocks and itera-
tions

The defaultis setto --both -ggttgg -dbl -flt -inl®’ (both CPU and GPU,
ggttgg only, both d and f, inl0 only).

2.1.4 Vectorization

In the work presented in this thesis, we compared CPU and GPU. In the case of CPU,
we used various vectorization techniques supported by x86 architecture. SSE4 [11],
AVX2[10],512Y, and 5127 [9] are all extensions to the x86 instruction set architecture
used in modern CPUs. They provide additional instructions and capabilities to enhance
performance in various tasks, particularly in areas like multimedia processing, scientific
computing, and cryptography. Here’s a brief overview of each:

* SSE4 (Streaming SIMD Extensions 4): SSE4 is a set of SIMD (Single
Instruction, Multiple Data) instructions introduced by Intel in 2006 with their
Penryn microarchitecture. SSE4 includes several sub-extensions (SSE4.1 and
SSE4.2), which offer enhancements such as string and text processing instructions,
improved dot product calculations, and faster CRC32 checksum generation.
SSE4 instructions are widely used in multimedia applications and some scientific
computing tasks.

* AVX2 (Advanced Vector Extensions 2): AVX2 is an extension of Intel’s AVX
instruction set, introduced with their Haswell microarchitecture in 2013. AVX?2
provides additional SIMD instructions to accelerate floating-point and integer
arithmetic operations, including vectorized multiply, accumulate, and permute
operations. AVX2 is particularly beneficial for numerical computing workloads
and is supported by many modern CPUs.

e 512Y and 5127 (AVX-512): AVX-512 is an advanced extension of the AVX
instruction set, introduced by Intel with their Knights Landing and Skylake-X
microarchitectures. AVX-512 extends the width of vector registers to 512 bits,
allowing for even more parallelism in SIMD operations. The ”Y” and 7Z”
in AVX-512 refer to different subsets or extensions of AVX-512 instructions,
each providing additional capabilities and optimizations. AVX-512 is designed
for high-performance computing workloads, including scientific simulations,
artificial intelligence, and data analytics.

These extensions play a crucial role in improving the performance of software
applications that leverage parallelism, making them essential for various com-
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puting tasks ranging from scientific simulations to multimedia processing and
machine learning.

2.1.5 Docker

Docker [2] provides support to package and run an application in an isolated en-
vironment. This isolated environment is called a container. These containers are
lightweight and contain all the dependencies required to run the application. The
analysis we did was based on containers. Sharing containers ensures that everyone is
working with the same application in the same environment. Figure 2.3 shows the
Docker architecture. Docker provides support for easy and hassle free deployment of
an application in the following manner:

* development of an application based on containers
* distributing and testing via containers

* deployment of application as a container

I%nt ]Docker Host I IRegistry I
‘f R ‘ ( 2) images j | Containers | Images
docker run > [ 7;.—". [
| A ] NGiMX
’ LI @ redis mﬂ @
docker build{........J......... suss g0t AT AL I Aswsnoen »! Y
| | [l [
) O e
(7 ) Docker g w
d
docker pull ‘ """""" = B R R CEGnRee R IR LT EEE LR P ETTRTTRELSLES FERED: ""'L
ho \‘Exmmsi J
| = @08
lﬂugins ]
| | o 8O

Figure 2.3: Docker architecture [2]
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Docker versus Singularity

Like Docker, Singularity [19] is also one of the containerization technologies. Docker
containers can also be converted to and or run from Singularity. We prefer singularity
because it needs no root privileges. This feature makes Singularity containers more
suitable for use in environments where users do not have administrative access to
the host system. The HEPscore containers however are built with Docker, then we
do convert them to Singularity and store the Singularity Image File (SIF) images.
While Docker and Singularity both offer containerization solutions, they have different
focuses and are suited to different use cases. Docker is widely used in various
environments for its flexibility and extensive ecosystem, while Singularity is favored
in HPC and research environments for its security features and compatibility with
scientific computing workflows since Docker containers may not always be directly
compatible with HPC environments due to differences in security policies and resource
management.

Docker image

A Docker image serves as a fundamental building block in container technology,
encapsulating an application and all its dependencies into a portable and self-contained
package. These images are created using a Dockerfile, which defines the environment
and configuration needed to run the application. Leveraging layered file systems,
Docker images promote efficiency and reproducibility, enabling developers to easily
share and deploy applications across diverse environments. Each image consists of a
series of read-only layers, representing incremental changes made during the image’s
construction. This layered approach fosters rapid image deployment and efficient
resource utilization, as only the modified layers need to be rebuilt when updating
or customizing an image. Moreover, Docker images are stored in repositories such
as Docker Hub [3], facilitating seamless distribution and collaboration within the
developer community. The MadGraph containers, like all HEPscore containers, are
available on a respository at CERN: “registry.cern.ch” as seen in listings 2.1 and 2.2.

Docker container

A Docker container is a lightweight, standalone, and executable software package that
encapsulates an application along with its dependencies and runtime environment.
Built from Docker images, containers offer a consistent and reproducible environment
across different systems, enabling developers to package applications once and
run them anywhere. Containers leverage operating system-level virtualization to

10
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isolate processes and resources, providing efficient utilization of system resources and
ensuring application portability. With Docker, developers can easily create, deploy, and
manage containers using simple commands, streamlining the software development
lifecycle. Containers facilitate microservice architectures, enabling applications to be
broken down into smaller, modular components that can be independently developed,
deployed, and scaled. Additionally, Docker containers promote scalability, agility,
and consistency in application deployment, making them an essential tool for modern
software development and deployment workflows.

Docker CLI

The Docker CLI is a robust tool for managing containerized applications and or-
chestrating Docker containers efficiently. With just a few simple commands, users
can perform a wide range of tasks, from pulling images to launching and managing
containers. For instance, to pull a Docker image from Docker Hub, you can use the
docker pull command followed by the name of the image. Here’s an example:

Listing 2.3: Pulling an image
docker pull nginx

This command downloads the latest version of the NGINX web server image from
Docker Hub onto your local machine. Once the image is pulled, you can use the docker
run command to create and start a container based on that image. For example:

Listing 2.4: Running a container in detached mode

docker run -d --name my-nginx -p 8080:80 nginx

This command creates a new container named my-nginx, maps port 8080 on the host
to port 80 on the container, and runs the NGINX web server within the container.
The -d flag tells Docker to run the container in detached mode, meaning it runs in the
background. You can then use various other commands like docker ps to view running
containers, docker stop to stop a container, and docker rm to remove a container,
among others. With its simplicity and versatility, the Docker CLI streamlines the
process of container management and empowers users to build, deploy, and manage
containerized applications with ease.

11






CHAPTER 3

Implementation

The implementation of the benchmarking process involved several steps, including
learning to run the HEPscore standalone, executing HEPscore with the suite, extending
the configuration to measure power consumption, and more. This analysis is specifically
focused on the MadGraph workload, considering both CPU and GPU performance.
The process of analyzing can be broken down into the following steps, each of which
is elaborated upon in detail in this chapter:

* Running HEPscore with the suite: While HEPscore can function independently,
utilizing the suite offers additional advantages, therefore, it is recommended to
run it with the suite.

* Customizing the suite configuration for the MadGraph workload for CPU
as well as GPU: The suite allows for the simultaneous execution of multiple
workloads, including MadGraph, but requires tailored configuration adjustments
according to user’s needs.

* Extending the configuration of the suite to include the Energy measurement
plugins: A crucial aspect of our analysis involved integrating the plugins to
measure energy consumption and other crucial metrics on both CPU and GPU
platforms.

* Publishing the results: The benchmarking results can be published to the
WLCG Benchmark Database, ensuring wider accessibility and transparency
within the scientific community.

13
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3.1 Running HEPscore with the suite

The suite can be executed using the run_hepscore. sh script [18] available on the
suite repository. The script can be edited according to the user’s needs. To run the
script, a machine must have at least 20 GB of free hard disk space and the following
prerequisites installed on the system:

 Apptainer/Singularity (version 1.1.6 or higher)
* Python version 3.9 or higher;

* python3-pip;

* git

To run the script, one can use the following command:

Listing 3.1: Running hep-score
./run_HEPscore.sh -s SITE

The above command executes the workloads in HEPscore. This bash script serves as
a versatile tool for installing and executing the HEP-Benchmark-Suite, automating
various configuration options and providing flexibility in deployment. Upon execution,
the script first checks for necessary parameters, including site name, certificate details
for publishing results, and container executor preference. It then proceeds to set up
the suite environment, including creating a Python virtual environment and installing
the suite components either from the repository or pre-built wheels.

The script provides options for installation only (-i flag), running the suite only (-r
flag), or both. During execution, it ensures that no other instances of the suite are
running and verifies available workspace’s space. The suite is then run, with memory
usage monitored throughout the process. Upon completion, the script handles various
post-execution tasks, including creating a tarball for error analysis, prompting to send
results to AMQ, and checking for memory usage anomalies.

The script is also responsible for reporting the results in the desired directory. The
report also includes metadata about the server’s running conditions. More information
about the CLI parameters are given in the script itself. The results can also be
published to the WLCG Benchmark Database.

HEPscore can also be executed as a stand-alone instead of being executed through
the suite. To do that, one can use the python virtual environment and follow the
following steps:

14
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Listing 3.2: Installing hep-score
python3 -m venv HS23env
source HS23env/bin/activate
pip3 install git+https:// gitlab.cern.ch/
hep-benchmarks/hep-score.git@vl.5

To run HEPscore, one can execute the following command:

Listing 3.3: Running hep-score standalone

hepscore -v PATH TO_WORKDIR

3.1.1 Usage of hep-score Command

The hep-score command provides a versatile interface for benchmarking tasks,
offering various options to customize execution and output. When invoked, it requires
a positional argument specifying the base output directory where benchmark results
will be stored. Additionally, it supports several optional arguments (one example is
given below, rest are provided in Appendix A.1:

e -m [singularity,docker]or--container_exec [singularity,docker]:
Allows the user to specify the container platform for benchmark execution, with
Singularity being the default option.

Furthermore, the hep-score command provides usage examples for different
scenarios:

1. Running benchmarks via Docker while displaying verbose information.

2. Running benchmarks using Singularity (default) with a custom benchmark
configuration.

3. Listing built-in benchmark configurations.
4. Running with a specified built-in benchmark configuration.

Overall, the hep-score command offers a comprehensive set of options to cater to
various benchmarking needs, making it a powerful tool in performance evaluation
tasks.

Now that we have seen how to run and install the suite and HEPscore, let’s look at
how to customize its configuration in the next section.

15
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3.2 Customizing the configuration

To run any of the workloads, one needs to configure the suite as well as the HEPscore
application. A user might be interested in certain workloads only, or might want to
pass different parameters while executing the workloads. For that, one can customize
the configuration. Let’s see how one can customize the suite and the HEPscore
configurations and incorporate those in run HEPscore. sh.

3.2.1 Custom configuration for the suite

We used the following configuration for the suite:

Listing 3.4: Configuration file for the benchmark suite

activemgq :
server : $SERVER
topic: $TOPIC
port: $PORT
key: $CERTIFKEY
cert: $CERTIFCRT

global:
benchmarks:
- hepscore
mode : SEXECUTOR
publish: $PUBLISH
rundir : $RUNDIR
show: true
tags:
site: $SITE
hepscore:
config: $WORKDIR/$HEPSCORE_CONFIG_FILE
version: vl.5
options :
userns : True
clean: True

In this context, the activemq key serves a pivotal role in the publishing process.
Within this key, the parameters key and cert are employed to denote the respective

16
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paths leading to the key and certificate files necessary for authentication during result
publication via the messaging service. These credentials, obtained upon request, play
a vital role in securing the transmission of benchmarking data. The benchmarks
field, nestled within the broader configuration framework, offers a versatile array of
options. Here, benchmark names such as hepscore, hs06, db12, among others, can
be specified, catering to diverse analytical needs and performance evaluation metrics.
Similarly, the mode parameter within the configuration delineates the execution mode,
affording flexibility between singularity, docker, and other modes as per operational
requirements. Delving deeper into the hepscore section, one can use the config
key by providing a path to the designated hepscore configuration file. This file, when
utilized during execution, ensures adherence to specific configurations tailored to the
benchmarking process.

3.2.2 Custom configuration for HEPscore

We used the following configuration file for HEPscore to run the MadGraph container
on CPU:

Listing 3.5: Configuration file for HEPscore

hepscore_benchmark:
benchmarks :
mgSamc - MadGraph4gpu-2022 -bmk:

results_file: mgSamc-MadGraph4gpu-2022_

summary . json

ref_scores:
ggttgg-sa-cpp-d-inl0-best:
ggttgg-sa-cpp-d-inl0-none:
ggttgg-sa-cpp-f-inl0-best:
ggttgg-sa-cpp-f-inl0-none:
ggttgg-sa-cpp-d-inl0-sse4:
ggttgg-sa-cpp-f-inl0-sse4d:
ggttgg-sa-cpp-d-inl0-avx2:
ggttgg-sa-cpp-f-inl0-avx2:
ggttgg-sa-cpp-d-inl0-512y:
ggttgg-sa-cpp-f-inl0-512y:
ggttgg-sa-cpp-d-inl0-512z:
ggttgg-sa-cpp-f-inl0-512z:

weight: 1.0

Y G G GG (S A GO O U W
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version: v0.7
args:
events: 100
extra-args:
settings :
name: MadGraph_Keshvi
reference_machine: “CPU Intel (R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz”registry : $REGISTRY ://
gitlab-registry .cern.ch/hep-benchmarks/hep-

2

’_ —Cpu”

workloads$REGISTRY _SUFFIX
method: geometric_mean
repetitions: 3

retries: 1

scaling: 1
container_exec : $SEXECUTOR

In this section, we delve into the configuration details for executing the *'mg5amc-
MadGraph4gpu-2022-bmk’ benchmark. We specify that the results obtained from
this benchmarking exercise should be stored in *mgSamc-MadGraph4gpu-2022 -
summary.json’, ensuring accessibility and organization for subsequent analysis.

The ref_scores section plays an essential role for collecting essential performance
metrics from the benchmark container output. The metrics mentioned under this
section are collected and reported during the benchmarking process. Each sub-score
within this section is associated with a reference score obtained from the specified
reference machine, facilitating a comparison and evaluation process. These sub-
scores undergo normalization, where each is divided by its corresponding reference
score. Subsequently, the geometric mean is computed from these normalized scores,
resulting in the derivation of a comprehensive final score for the benchmark container.
This approach ensures robustness and reliability in performance assessment.

Furthermore, the version and the weight for the container is specified in version
and weight respectively.

The args keyword offers a level of customization, allowing users to pass additional
arguments to the benchmarking process. In the provided configuration (Listing 3.5),
we include events: 100 and --cpu as extra arguments, configuring the MadGraph
container to execute with 100 events on the CPU.

Under the settings section, specifications are made regarding the reference
machine, identifying it as the "CPU Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz”.

18



3.2 Customizing the configuration

Additionally, attention is given to specifying URLs for running the container from
various repositories using the registry parameter, which supports options like
Docker or Singularity.

Planning and consideration are evident in parameters such asmethod, repetitions,
retries, and scaling, each designed to ensure control and accuracy in benchmark
execution and result interpretation.

It’s essential to note that the ref_scores may vary depending on the device and
the specific process under investigation. The HEPscore configuration for running
MadGraph on the GPU is provided in Appendix A.2, offering a comprehensive guide
for GPU-based performance assessment.

This configuration can be seamlessly integrated into the run_hepscore bash script
for benchmarking the workloads with the hep-benchmark-suite. For further insight
into MadGraph ref-scores, documentation is provided in Appendix A.2.1.

3.2.3 Incorporating the changes in the execution script

Now that we have our configuration files for the HEPscore as well as the suite, we can
incorporate these in the run_hepscore. sh bash script in the hepscore_install()
function as follows:

Listing 3.6: Incorporating the custom configuration in run_hepscore. sh

hepscore_install (){

# HEPSCORE_CONFIG_FILE_CREATION
cat > $WORKDIR/$HEPSCORE_CONFIG_FILE <<EOF
hepscore_benchmark:

EOF

# SUITE_CONFIG_FILE_CREATION

cat > $WORKDIR/$SUITE_CONFIG_FILE <<EOF2
activemq:

EOF2
if [ -f $SWORKDIR/$SHEPSCORE_CONFIG_FILE ]; then
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cat $WORKDIR/$HEPSCORE_CONFIG _FILE
fi
}

One can just run this bash script to run the MadGraph workload with the hep-
benchmark-suite.

3.3 Using the Energy measurement plugins

Along with measuring performance, various other metrics are of importance to us.
Studying how the power consumption varies with the load, memory-usage, etc. could
give interesting insights and help us use the best possible resources in terms of time
and energy efficiency. To be able to do that, we use a plugin supported by the suite [4].
The plugins are designed to run concurrently, and thus they do not interfere with the
benchmarking process. They are executed in three phases:

e pre : before the benchmarking starts
* during: during benchmarking
* post: after the benchmarking

To use a plugin, one needs to configure the plugin in the suite’s configuration file. It is
discussed in the following sub section.

3.3.1 Configuration

The configuration should include a plugins sections under which the user must
list the used plugins. These plugin names must be identical to the class names in
hepbenchmarksuite/plugins/registry. To use the energy measurement plugins,
one can configure it in the configuration file in the hepscore_install () function as
follows:

Listing 3.7: Configuring plugins in the suite
hepscore:

clean: True
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3.3 Using the Energy measurement plugins

plugins:
CommandExecutor :
metrics :

load:
command: uptime
regex: ’'load average: (?P<value>\d+.\d+),’
unit: 7’
interval _mins: 0.1

server-power-consumption:
command: sudo ipmitool dcmi power reading
regex: 'Instantaneous power reading:
\sk(?P<value >\d+) Watts’
unit: W
interval _mins: 0.1

gpu-power-consumption:
command: nvidia-smi --query-gpu=power.draw --
format=csv ,noheader , nounits
regex: ~(?P<value>\d+(.\d+)?).%’
unit: W
interval _mins: 0.1
gpu-usage:
command: nvidia-smi --query-gpu=utilization.gpu
--format=csv ,noheader , nounits
regex: (?P<value>\d+(.\d+)?).x%x’
unit: W
interval _mins: 0.1

In our system setup, users can choose what data they want to track. They do this by
specifying certain metrics within the plugins section, under the CommandExecutor
keyword. For example, we’re interested in keeping an eye on how busy the processor
cores are, how much power the server uses, and how the GPU is doing.

To get this data, we need to tell the system what commands to use. For instance,
we use a tool called ipmitool to find out how much power the server is using. This
tool needs special access rights, so it’s important to be aware of that. The relevant
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information can be accessed through the regular expression regex.

Each metric we track has a unit of measurement, like watts for power or percentage
for CPU load. We also decide how often to take measurements. In our case, we
take readings every 0.5 minutes, or every 30 seconds, to get a good picture of what’s
happening.

For longer tasks that last hours, it’s better to take measurements every few minutes.
But for tasks that change quickly, like fast-paced simulations, it’s helpful to take
measurements every few seconds. This way, we can stay on top of things and make
informed decisions about our system’s performance.

Results

The results are stored in the suite report (in a json file). The data for pre, during and
the post benchmarking phases are stored under different keys. The following example
shows a snippet of the report for the pre benchmarking phase:

Listing 3.8: Pre phase plugin results

“plugins”: {

”CommandExecutor”: {
’9pre9’: {
“power-consumption”: {

Pstart_time”: 72023-08-11T15:02:08.767934Z2”,
“end_time”: 72023-08-11T15:02:08.767934Z2”,

“values”: |
604.0
I,
Pstatistics”: {
"min”: 604.0,
"mean”: 604.0,
“max”: 604.0
}s
“config”: {
“interval _mins”: 0.16666666666666666,
“command”: ”sudo ipmitool dcmi power reading”,
“regex”: "Instantaneous power reading:\\
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sx(?P<value >\\d+) Watts”,
Tunit”: "W,
“aggregation”: “sum”
}
}

Here, the values for the pre phase are stored under the pre keyword. Each metric’s
data is kept under its respective keyword. For example, we were interested in the
power-consumption metric here.

The start and end times are also recorded, along with the observed values. In
this case, since this is pre-phase of plugin, we only observed one value before the
benchmarking began. Under the statistics keyword, we can see the minimum,
maximum, and average values, giving us an idea of the overall range. These values
are important when the plugin stores many values during benchmarking.

Now that, we have discussed the necessary theoretical background and how to run
and configure the suite, let’s analyze the results in the next section.
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CHAPTER 4

Benchmarks

4.1 Results
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Figure 4.1: Measurement Methodology

L

The server where we ran the MadGraph application is powered by an Intel Platinum
8362 CPU running at 2.80GHz, comprising of 64 cores, and an Nvidia L4 GPU, as
shown in Figure 4.1. This server was chosen because similar machines are employed

for running HEP simulations being done at CERN.
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4.1.1 Power Efficiency

The power consumption of the server during the execution of 100 events of the
MadGraph application is illustrated in Figure 4.2. Our goal here isn’t to compare
speed but rather to focus on the power usage of both CPU and GPU when each of
those are working at full capacity, in other words, when the resources of the machine
are fully saturated. We can see that the power consumption is significantly higher for
the CPU only run.

In this scenario, the graph displays two distinct curves: the blue curve corresponds
to computations executed on the CPU, while the orange curve (both dotted and solid)
corresponds to the GPU run. Notably, for the GPU run, the CPU serves solely to offload
tasks to the GPU, acting as an orchestrator for offloading computational work. This is
not conventionally true in general, since this is just a stand-alone container. Currently,
all calculations are being done by GPU (random number generation, mapping of
random numbers to particle momenta, calculation of matrix elements from particle
momenta). In a realistic scenario, there would be some calculations on CPU as well.
This will soon be interfaced with HEPscore.

During CPU-only operations, the container manages executions with varying CPU
vectorization techniques, including no vectorization, SSE4, AVX2, and others. Here,
the first narrow peak can be ignored since it corresponds to HEPscore initialization.
Refer to the figure 4.5 for the following bullet points since it provides labelling for the
sake of clarity.

* The next two plateau-like features on the graph (blue curve) represent computa-
tions performed in both double and single precision without any vectorization.

* Subsequent plateaus occur for SSE4 vectorization in both double and single
precision.

* The next two plateaus after the SSE4 vectorizations represent the AVX2 vector-
ization in both double and single precision.

* The next two plateaus after the AVX?2 vectorizations represent the 512y vectoriz-
ation in both double and single precision.

 The next two plateaus after the 512y vectorizations represent the 512z vectoriza-
tion in both double and single precision.

Across all instances, it’s evident that double precision computations consistently
require approximately twice the time of single precision computations, aligning with
the expected behavior. Also, refer to the section 4.1.3 for more details.
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Here, both the solid blue and orange curve show power consumption of the entire
server. While the dotted orange curve shows the power consumption solely of the
GPU while running the benchmarks on GPU.

In summary, the graph provides insights on the comparison of power consumption for
CPU and GPU. The graph also provides insights into the time taken for computations
under various vectorization techniques, highlighting the inherent differences in
performance between double and single precision calculations.

Based on the plots, the power consumption across different vectorization modes:
none, SSE4, AVX?2, 512Y and 5127 is the same. This consistency implies a substantial
reduction in total energy consumption when employing vectorization techniques.
Therefore, the amount of energy being consumed doesn’t increase with the employ-
ment of vectorization techniques, even when the throughput rises significantly.
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Variation of Server Power Consumption with Time
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Figure 4.2: Variation of Server Power Consumption with Time

4.1.2 Load and Utilization

The Intel Platinum core CPU used for our analyses typically operates on ~ 500
Watts [12] for a dual socket system. One can observe that the increase in CPU load
leads to a increase in power consumption as shown in the CPU-only curve and as
can be seen in figure 4.3. As the load increases, a large number of transistors on
CPU become active which could have led to the increase in the power consumption.
Moreover, increasing the load also leads to the increase in the number of physical
cores being used at any given time, therefore, the power consumption increases.One
can also see that the CPU load is minimal for the CPU + GPU run since CPU is just
being used to offload the work to the GPU. The Nvidia L4 GPU typically operates on
~ 72 Watts [13] and it increases to = 80 when the GPU is being used.
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4.1.3 HEPScore

Figure 4.5 shows the hepscores for CPU (different vectorizations) and GPU. The little
graph on the top right is only to make visualization easier. As mentioned in 2.1.3,
the prefix d refers to the double precision computations and the prefix f refers to the
single precision computations. The suffixes none, sse4, avx2, 512y and 512z are the
vectorizations that were used. It can be inferred that the single precision computations
are approximately twice as time efficient as the double precision calculations while
using vectorization on CPU. When compared with the plot on the right, one can see
how the length of the hep-score bar is inversely proportional to the length of each peak.
This tells us that the higher the hepscore, more time efficient is the corresponding
configuration. As expected, the 512z’ vectorization is the most time efficient. Let us
look at each vectorization one by one:

* none: d and f have the same throughput, as numerical precision with no
vectorization is almost irrelevant

* SSE4: HEPscore gains a factor of 2 in d and a factor of 4 in f since, in a 128 bit
(SSE4) SIMD (Single Instruction, Multiple Data) register one can fit two 64-bit
doubles and four 32-bit floats

» AVX2: HEPscore gains a factor of 4 in d and a factor of 8 in f since, in a 256 bit
(AVX?2) SIMD register one can fit four 64-bit doubles and eight 32-bit floats

* 512y: It is similar to avx2 because it uses the same 256 bit (ymm) registers

* 512z: HEPscore gains a factor of 8 in d and a factor 16 in £ since, in a 512 bit
(AVX512) SIMD register (zmm) one can fit eight 64-bit doubles and sixteen
32-bit floats. Here, we lose a bit from clock slowdown when the machine is full.
This clock slowdown is a common phenomena in x86 when full vector units
are used.

For more details about MadGraph and the vectorizations, refer to the paper [22].
Since we were using an Nvidia L4 GPU here, which mainly provides support for
floating point computations only, the double precision score is really low for the GPU.

Also, it can be noted that given a precision, say, double precision, the matrix
elements remain exactly the same within the precision. For example, the matrix
elements will remain identical for no vectorization, SSE4, AVX2, 512y, 512z or
CUDA.
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Variation of Server Power Consumption with Time
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Figure 4.5: HEPScore for different Vectorizations

4.1.4 Miscellaneous

Apart from these results, work was conducted on the analysis of effect of the Intel
microcode update [17] on different vectorizations. This microcode update was done
as a mitigation strategy for the Gather Data Sampling (GDS) [21] (also called the
"Downfall’) vulnerability [S]. The vulnerability stems from memory optimization
functionalities present in Intel processors, inadvertently disclosing internal hardware
registers to software. Consequently, this enables untrusted software to retrieve data
stored by unrelated programs, a scenario that typically wouldn’t occur. Intel released
a microcode update to mitigate this vulnerability. This update could potentially affect
the vectorization units. The microcode update was done on all the CERN servers
as a security measure. The results we present here, in figure 4.6 are preliminary
results. These results compare HEPscore for the execution of the MadGraph container,
before and after the microcode update. It can be seen that the ratio stays 1 for all the
vectorizations except the 512y vectorization. These are just preliminary results and
not yet understood entirely. It could also be related to the way the data was collected.
This test must be repeated for further analysis.

The analysis that was done for Madgraph was also done for the cms-h1t workload [1].
These results are preliminary and need further assessment and analysis. Some of the
results are presented in appendix A.3.
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CHAPTER 5

Conclusion and Outlook

5.1 Conclusion

In this thesis, a comprehensive analysis of the power consumption and performance
characteristics of the server was done. The server comprises of an Intel Platinum 8362
CPU running at 2.80GHz with 64 cores and an Nvidia L4 GPU.

The primary objective was to investigate power consumption under various scenarios.
A particular focus was put upon comparing CPU-only and CPU+GPU execution when
the computational resources were fully utilized. A total of 100 events of the MadGraph
application were executed to gather data for the analysis.

The results clearly demonstrate a significant difference in power consumption
between CPU-only and CPU+GPU execution. When running solely on the CPU,
power consumption was notably higher. In contrast, when offloading computation
to the GPU, while keeping the CPU load minimal, power consumption decreased
significantly. This outcome highlights the energy efficiency gained by leveraging GPU
acceleration for computationally intensive tasks.

Furthermore, our analysis delved into different CPU vectorization strategies, such
as no vectorization, SSE4, and AVX2, among others. As expected, single-precision
computations consistently outperformed double-precision calculations across all
vectorization strategies, taking approximately half the time.

We also examined the power consumption characteristics of the Intel Platinum
core CPU, which typically operates at around 500 Watts in a dual-socket system. It
was observed that increasing CPU load led to a corresponding increase in power
consumption, as evident in the CPU-only execution curve.

On the GPU side, the Nvidia L4 GPU consumed approximately 72 Watts under
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normal conditions, which increased to approximately 80 Watts when the GPU was
actively engaged.

This tells us that the power consumption indeed increases while performing
computationally intensive tasks (more load). But an important result is that the
power consumption remains in the similar range while using different vectorizations.
One of the big takeaways from this work is: while using 512z (double and single
precision), one gains a factor of 16 and 8 respectively in the performance. But the
power consumption remains very similar to what was observed for no vectorization.
Thus one can do more work in less amount of time (and therefore consume very less
power when implementing vectorization).

In summary, our analysis concludes that for the given dataset and workload, CPU-
only execution results in higher power consumption as compared to the CPU+GPU
execution. And that the MadGraph container is highly parallel (also because it is a toy
model). Since the container is highly parallel, we gain performance with different
vectorizations and precisions. The power consumption for different vectorizations
remains the same, hence, we can save a significant amount of energy using 512z or
512y vectorization techniques.

5.2 Outlook

We aim to integrate the current studies with the upcoming MadGraph container. We
also aim to calibrate with the new data for more accurate results. In this report,
ref-scores were taken to be 1.0 for simplicity but it should ideally be calculated
on the reference machine and then the HEPscores for our server should be calibrated
accordingly. The analysis can also be done on new generation Nvidia GPUs and ARM
architectures.

In figure 4.2, the solid orange curve seems much longer than it should be. This is
because the GPU workload is not guaranteed to run exactly the same number of events
as the CPU workload. So, comparing the horizontal scales of the blue and orange
curves cannot be done at face value and the analysis requires a bit more work.

The work presented in this thesis was done for MadGraph but the same can also be
done for other workloads, especially the workloads which already have a GPU interface.
Further studies are needed on different servers to verify if the current findings can be
generalised. There are multiple components that could be server-dependent: server
motherboard, power module, model of CPU and/or GPU etc.

Lastly, the analysis done for the microcode update needs further work and more
tests. This could confirm whether the update actually affects the performance for
different vectorizations.
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Appendix A

A.1 HEPscore CLI parameters

The hep-score command provides a versatile interface for benchmarking tasks,
offering various options to customize execution and output. When invoked, it requires
a positional argument specifying the base output directory where benchmark results
will be stored. Additionally, it supports several optional arguments:

e -m [singularity,docker]or--container_exec [singularity,docker]:
Allows the user to specify the container platform for benchmark execution, with
Singularity being the default option.

* -S or --userns: Enables user namespace for Singularity, if supported.
e —c or --clean: Cleans residual container images from the system after the run.

e —Cor --clean_files: Cleans residual files and directories after execution and
tar results.

e -f [CONFFILE] or --conffile [CONFFILE]: Specifies a custom config
YAML to use instead of the default.

e -1 or --1ist: Lists built-in benchmark configurations and exits.

e -n [NAMEDCONF] or --namedconf [NAMEDCONF]: Uses the specified named
built-in benchmark configuration.
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* -r or --replay: Replays output using an existing results directory specified by
OUTDIR.

* -0 [OUTFILE] or --outfile [OUTFILE]: Specifies the summary output file
path/name.

* -y or --yaml: Creates YAML summary output instead of JSON.
e -p or --print: Prints configuration and exits.
e -Vor --version: Shows the program’s version number and exits.

* -v or --verbose: Enables verbose mode, displaying debug messages.

Furthermore, the hep-score command provides usage examples for different
scenarios:

1. Running benchmarks via Docker while displaying verbose information.

2. Running benchmarks using Singularity (default) with a custom benchmark
configuration.

3. Listing built-in benchmark configurations.

4. Running with a specified built-in benchmark configuration.

Overall, the hep-score command offers a comprehensive set of options to cater to
various benchmarking needs, making it a powerful tool in performance evaluation
tasks.

A.2 The HEPscore configuration for running
MadGraph on GPU

We used the following HEPscore configuration to run MadGraph on GPU:

Listing A.1: The HEPscore configuration for running MadGraph on GPU

hepscore _benchmark:
benchmarks:
mgSamc - MadGraph4gpu-2022 -bmk:
results _file: mgSamc-MadGraph4gpu-

36



A.2 The HEPscore configuration for running MadGraph on GPU

2022 _summary . json

ref_scores:
ggttgg-sa-cuda-d-inl0: 1
ggttgg-sa-cuda-f-inl0: 1

weight: 1.0
version: v0.7
args:
events: 100
extra-args: 7--gpu”
gpu: TRUE
settings :

name: MadGraph_Keshvi

reference_machine: "CPU Intel (R) Xeon(R)

CPU E5-2630 v3 @ 2.40GHz”

registry : $REGISTRY :// gitlab-registry .cern.ch/
hep-benchmarks/hep-workloads$REGISTRY _SUFFIX
method: geometric_mean

repetitions: 3

retries: 1

scaling: 1

container_exec: $EXECUTOR

A.2.1 More about MadGraph

AS per the reference [16], the following scores for the MadGraph workload are
reported (where <process> is eemumu, ggtt, ggttg or ggttgg):

* <process>-sa-cuda-d-inl® : CUDA (GPU), double precision, without
inlining

* <process>-sa-cuda-d-inll: CUDA (GPU), double precision, with inlining

* <process>-sa-cuda-f-inl® : CUDA (GPU), single precision, without inlin-
ing

* <process>-sa-cuda-f-inll: CUDA (GPU), single precision, with inlining

* <process>-sa-cpp-d-inl@-none : C++ (CPU), double precision, without
inlining, scalar (no SIMD)
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<process>-sa-cpp-d-inl0@-sse4 : C++ (CPU), double precision, without
inlining, SSE4

<process>-sa-cpp-d-inl0®-avx2 : C++ (CPU), double precision, without
inlining, AVX?2

<process>-sa-cpp-d-inl0®-512y : C++ (CPU), double precision, without
inlining, AVX512 with 256-bit ymm registers

<process>-sa-cpp-d-inl0-512z : C++ (CPU), double precision, without
inlining, AVX512 with 512-bit ymm registers

<<process>-sa-cpp-d-inll-none : C++ (CPU), double precision, with
inlining, scalar (no SIMD)

<process>-sa-cpp-d-inll-sse4 : C++ (CPU), double precision, with inlin-
ing, SSE4

<process>-sa-cpp-d-inll-avx2 : C++ (CPU), double precision, with inlin-
ing, AVX2

<process>-sa-cpp-d-inl1-512y : C++ (CPU), double precision, with inlin-
ing, AVX512 with 256-bit ymm registers

<process>-sa-cpp-d-inl1-512z : C++ (CPU), double precision, with inlin-
ing, AVXS512 with 512-bit ymm registers

<process>-sa-cpp-f-inl®-none : C++ (CPU), single precision, without
inlining, scalar (no SIMD)

<process>-sa-cpp-f-inl0-sse4 : C++ (CPU), single precision, without
inlining, SSE4

<process>-sa-cpp-f-inl@-avx2 : C++ (CPU), single precision, without
inlining, AVX?2

<process>-sa-cpp-f-inl0-512y : C++ (CPU), single precision, without
inlining, AVX512 with 256-bit ymm registers

<process>-sa-cpp-f-inl0-512z : C++ (CPU), single precision, without
inlining, AVXS512 with 512-bit ymm registers

<process>-sa-cpp-f-inll-none : C++ (CPU), single precision, with inlin-
ing, scalar (no SIMD)
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* <process>-sa-cpp-f-inll-sse4 : C++ (CPU), single precision, with inlin-
ing, SSE4

* <process>-sa-cpp-f-inll-avx2 : C++ (CPU), single precision, with inlin-
ing, AVX2

* <process>-sa-cpp-f-inl1-512y : C++ (CPU), single precision, with inlin-
ing, AVX512 with 256-bit ymm registers

* <process>-sa-cpp-f-inl1-512z : C++ (CPU), single precision, with inlin-
ing, AVX512 with 512-bit ymm registers

A.3 Miscellaneous results

In this section we present the miscellaneous results which were done as part of the
process but are not included in the main text as these are preliminary and haven’t been
analyzed yet.

A.3.1 Benchmarking ‘cms-hlit’ workload

The analysis that we did for MadGraph was also done for for the ’cms-hlt” benchmark.
The results are presented in figures A.1, A.2 and A.3. These results still need to be
understood and analyzed. For the sake of completeness, we present these result here.
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Figure A.1: CPU Utilization for CMS-HLT benchmark
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Figure A.2: GPU Utilization for CMS-HLT benchmark
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Power consumption (W)
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Figure A.3: Variation of server power consumption for CMS-HLT benchmark
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